refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 308 results
Sort by

Filters

Technology

Platform

accession-icon GSE6791
Gene Expression Profiles of HPV-Positive and -Negative Head/Neck and Cervical Cancers
  • organism-icon Homo sapiens
  • sample-icon 84 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human papillomaviruses (HPVs) are associated with nearly all cervical cancers (CCs), 20-30% of head and neck cancers (HNCs), and other cancers. Because HNCs also arise in HPV-negative patients, this type of cancer provides unique opportunities to define similarities and differences of HPV-positive versus HPV-negative cancers arising in the same tissue. Here, we describe genome-wide expression profiling of 84 HNCs, CCs and site-matched normal epithelial samples in which we used laser capture microdissection to enrich samples for tumor-derived versus normal epithelial cells. This analysis revealed that HPV+HNCs and CCs differed in their patterns of gene expression yet shared many changes compared to HPV-HNCs. Some of these shared changes were predicted, but many others were not. Notably, HPV+HNCs and CCs were found to be upregulated in their expression of a distinct and larger subset of cell cycle genes than observed in HPV-HNC. Moreover, HPV+ cancers over-expressed testis-specific genes that are normally expressed only in meiotic cells. Many, though not all, of the hallmark differences between HPV+HNC and HPV-HNC were a direct consequence of HPV and in particular the viral E6 and E7 oncogenes. This included a novel association of HPV oncogenes with testes specific gene expression. These findings in primary human tumors provide novel biomarkers for early detection of HPV+ and HPV- cancers, and emphasize the potential value of targeting E6 and E7 function, alone or combined with radiation and/or traditional chemotherapy, in the treatment of HPV+ cancers.

Publication Title

Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE4870
Expression data from T65H translocation mice
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Tissue-specific comparison of gene expression levels in T65H translocation mice, either with or without uniparental duplications of Chrs 7 & 11. Identification of highly differentially expressed transcripts.

Publication Title

Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11789
Expression data from MatDp(dist2) and PatDp(dist2) mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comparison of gene expression levels between MatDp(dist2) and PatDp(dist2) mice (newborn whole head). Identification of highly differentially expressed transcripts.

Publication Title

Transcript- and tissue-specific imprinting of a tumour suppressor gene.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39152
Molecular signature of brain resident memory CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Tissue resident memory (Trm) represent a newly described memory T cell population. We have previously characterized a population of Trm that persists within the brain following acute virus infection. Although capable of providing marked protection against a subsequent local challenge, brain Trm do not undergo recall expansion following dissociation from the tissue. Furthermore, these Trm do not depend on the same survival factors as the circulating memory T cell pool as assessed either in vivo or in vitro. To gain greater insight into this population of cells we compared the gene-expression profiles of Trm isolated from the brain to circulating memory T cells isolated from the spleen following an acute virus infection. Trm displayed altered expression of genes involved in chemotaxis, expressed a distinct set of transcription factors and overexpressed several inhibitory receptors. Cumulatively, these data indicates that Trm are a distinct memory T cell population disconnected from the circulating memory T cell pool and displaying a unique molecular signature which likely results in optimal survival and function within their local environment.

Publication Title

The molecular signature of tissue resident memory CD8 T cells isolated from the brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73072
Host gene expression signatures of H1N1, H3N2, HRV, RSV virus infection in adults
  • organism-icon Homo sapiens
  • sample-icon 2886 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference, this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This study develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large-scale serially sampled respiratory virus challenge study, we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample.

Publication Title

An individualized predictor of health and disease using paired reference and target samples.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE41005
HSF1 mediated Gene regulation in T cells at normal (37C) and febrile (40C) temperatures
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

HSF1 is a major transcriptional regulator of heat shock responses. Many cells activate HSF1 in response to heat shock temperatures (>42oC) and other cellular stress causing agents. Unlike other cell types, T cells activate HSF1 in response to T cell activation or when exposed to febrile (40oC) temperatures, suggesting a role for HSF1 beyond the heat-shock response.

Publication Title

Heat shock transcription factor 1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE71764
Expression data from Arabidopsis during de-etiolation
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis fc2-1 mutants fail to properly de-etiolate after a prolonged period in the dark. Our goal was to monitor whole genome expression during the first 2 hours of de-etiolation to determine the cuase of this growth arrest.

Publication Title

Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE4990
Expression profile between mast cells from diabetic prone and diabetic resistant rat strains
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Abstract

Publication Title

Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the BioBreeding rat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30550
Temporal expression data from 17 health human subjects before and after they were challenged with live influenza (H3N2/Wisconsin) viruses
  • organism-icon Homo sapiens
  • sample-icon 268 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The transcriptional responses of human hosts towards influenza viral pathogens are important for understanding virus-mediated immunopathology. Despite great advances gained through studies using model organisms, the complete temporal host transcriptional responses in a natural human system are poorly understood. In a human challenge study using live influenza (H3N2/Wisconsin) viruses, we conducted a clinically uninformed (unsupervised) factor analysis on gene expression profiles and established an ab initio molecular signature that strongly correlates to symptomatic clinical disease. This is followed by the identification of 42 biomarkers whose expression patterns best differentiate early from late phases of infection. In parallel, a clinically informed (supervised) analysis revealed over-stimulation of multiple viral sensing pathways in symptomatic hosts and linked their temporal trajectory with development of diverse clinical signs and symptoms. The resultant inflammatory cytokine profiles were shown to contribute to the pathogenesis because their significant increase preceded disease manifestation by 36 hours. In subclinical asymptomatic hosts, we discovered strong transcriptional regulation of genes involved in inflammasome activation, genes encoding virus interacting proteins, and evidence of active anti-oxidant and cell-mediated innate immune response. Taken together, our findings offer insights into influenza virus-induced pathogenesis and provide a valuable tool for disease monitoring and management in natural environments.

Publication Title

Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55627
Microglial response to A and prostaglandin-E2 EP4 receptor activation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

A persistent and non-resolving inflammatory response to accumulating A peptide species is a cardinal feature in the development of Alzheimer's disease (AD). In response to accumulating A peptide species, microglia, the innate immune cells of the brain, generate a toxic inflammatory response that accelerates synaptic and neuronal injury. Many pro-inflammatory signaling pathways are linked to progression of neurodegeneration. However, endogenous anti-inflammatory pathways capable of suppressing A-induced inflammation represent a relatively unexplored area.

Publication Title

Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact