The goal of this study was to gain insight into the molecular heterogeneity of capillary endothelial cells derived from different organs by microarray profiling of freshly isolated cells and identify transcription factors that may determine the specific gene expression profile of endothelial cells from different tissues. The study focused on heart endothelial cells and presents a validated signature of 31 genes that are highly enriched in heart endothelial cells. Within this signature 5 transcription factors were identified and the optimal combination of these transcription factors was determined for specification of the heart endothelial fingerprint.
Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake.
Sex, Specimen part
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesEndothelial cells (EC) lining arteries and veins have distinct molecular and functional signatures. The (epi)genetic regulatory mechanisms underlying this heterogeneity in human EC are incompletely understood. Using genome-wide microarray screening we established a specific fingerprint of freshly isolated arterial (HUAEC) and venous EC (HUVEC) from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions and pathways. Among the arterial genes were 8 transcription factors, including HEY2, a downstream target of Notch signaling and the current golden standard pathway for arterial EC specification. Short-term culture of HUAEC or HUVEC abrogated differential gene expression resulting in a default state. Erasure of arterial gene expression was at least in part due to loss of canonical Notch activity and HEY2 expression. Notably, nCounter analysis revealed that restoring HEY2 expression or Delta-like 4 (Dll4)-induced Notch signaling in cultured HUVEC or HUAEC only partially reinstated the arterial EC gene signature while combined overexpression of the 8 transcription factors restored this fingerprint much more robustly. Each transcription factor had a different impact on gene regulation, with some stimulating only few and others boosting a large proportion of arterial genes. Interestingly, although there was some overlap and cross-regulation, the transcription factors largely complemented each other in regulating the arterial EC gene profile. Thus, our study showed that Notch signaling determines only part of the arterial EC signature and identified additional novel and complementary transcriptional players in the complex regulation of human arteriovenous EC identity
Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature.
Specimen part
View SamplesGlucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesTo understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.
Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.
No sample metadata fields
View SamplesWe sequenced mRNA from 6 samples of FACsorted telencephalons from E14.5 Sip1|Nkx2-1 knockout and WT|Nkx2-1 control mouse embryos to find differentially expressed genes in the absence of the transcription factor Sip1. Overall design: Examination of mRNA levels in 3 control and 3 Sip1|Nkx2-1 knockout samples
Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1.
Specimen part, Cell line, Subject
View SamplesGrowth daylength, ambient CO2 level, and intracellular hydrogen peroxide (H2O2) availability all impact plant function by modulating signalling pathways, but interactions between them remain unclear. Using a whole-genome transcriptomics approach, we exploited the conditional photorespiratory nature of the catalase-deficient cat2 mutant to identify gene expression patterns responding to these three factors. Arabidopsis Col-0 and cat2 grown for 5 weeks in high CO2 in short days (SD) were transferred to air in SD or long days (LD), and microarray analysis was performed. Of more than 500 genes differentially expressed in Col-0 between high CO2 and transfer to air in SD, the response of about one-third was attenuated by transfer to air in LD. H2O2-responsive genes in cat2 were highly dependent on daylength. The majority of H2O2-induced genes were more strongly up-regulated after transfer to air in SD than to LD, while a smaller number showed an opposing pattern. Responses of other H2O2-dependent genes indicate redox-modulation of the daylength control of fundamental cell processes. The overall analysis provides evidence that (1) CO2 level modulates stress-associated gene expression; (2) both CO2 and H2O2 interact with daylength and photoreceptor signalling pathways; and (3) cellular signalling pathways may be primed to respond to increased H2O2 in a daylength-determined manner.
Day length is a key regulator of transcriptomic responses to both CO(2) and H(2)O(2) in Arabidopsis.
Specimen part, Treatment
View SamplesWe investigate the role of Snf2l in ovaries by characterizing a mouse bearing an inactivating deletion on the ATPase domain of Snf2l (Ex6DEL). Snf2l mutant mice produce significantly fewer eggs than control mice when superovulated. Thus, gonadotropin stimulation leads to a significant deficit in secondary follicles and an increase in abnormal antral follicles. We profiled the expression of granulosa cells from Snf2l WT and Ex6DEL mice treated with pregnant mares' serum gonadotropin followed by human chorionic gonadotropin
The imitation switch ATPase Snf2l is required for superovulation and regulates Fgl2 in differentiating mouse granulosa cells.
Specimen part
View SamplesExogenous 17-estradiol (E2) accelerates the progression of ovarian cancer in the transgenic tgCAG-LS-TAg mouse model of the disease. We hypothesized that E2 has direct effects on ovarian cancer cells and this study was designed to determine the molecular mechanisms by which E2 accelerates ovarian tumour progression. Mouse ovarian cancer ascites (MASE2) cell lines were derived from tgCAG-LS-TAg mice. Following intraperitoneal engraftment of MASE2 into SCID mice, exogenous E2 significantly decreased the survival time and increased the tumour burden.
17β-estradiol upregulates GREB1 and accelerates ovarian tumor progression in vivo.
No sample metadata fields
View SamplesThe objective of the study was to better understand the mechanism behind scar formation by identifying ECM factors and other unique genes differentially expressed during rat ligament healing via microarray. Rat medial collateral ligaments (MCL) were surgically transected or left intact. MCLs were collected at day 3 or 7 post-injury and used for microarray analysis. Results were compared to the normal intact ligaments.
Gene profiling of the rat medial collateral ligament during early healing using microarray analysis.
Sex, Specimen part
View Samples