refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1858 results
Sort by

Filters

Technology

Platform

accession-icon SRP151306
Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptome of S. cerevisiae in shifts between glucose and maltose media with different re-growth conditions Overall design: Cells are pregrown in maltose, then grown for different durations in glucose and then washed back to maltose

Publication Title

A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE19428
Expression data from human melanoma cell lines treated or not with inflammatory cytokines
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Melanomas are often infiltrated by activated inflammatory cells. Thus, melanoma cells are very likely stimulated by inflammatory cytokines.

Publication Title

Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE11355
Mucosal responses of healthy humans to exponentially growing or stationary Lactobacillus plantarum bacteria
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Some commensal bacteria stimulate the immune system but do not present specific antigenicity. Such adjuvant effects have been reported for the bacterial species Lactobacillus plantarum. To study in vivo human responses to L. plantarum, a randomised double-blind placebo-controlled cross-over study was performed. Healthy adults were provided preparations of living and heat-killed L. plantarum bacteria, biopsies were taken from the intestinal mucosa and altered transcriptional profiles were analysed. Transcriptional profiles of human epithelia displayed striking differences upon exposure to living L. plantarum bacteria harvested at different growth phases. Modulation of NF-B-dependent pathways was central among the major altered cellular responses. This unique in vivo study shows which cellular pathways are associated with the induction of immune tolerance in mucosal tissues towards common adjuvanticity possessing lactobacilli.

Publication Title

Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18741
Mucosal responses of healthy humans to three different probiotic Lactobacillus bacteria
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Probiotic bacteria, specific representatives of bacterial species that are a common part of the human microbiota, are proposed to deliver health benefits to the consumer by modulation of intestinal function via largely unknown molecular mechanisms. To explore in vivo mucosal responses of healthy adults to probiotics, we obtained transcriptomes in an intervention study following a double-blind placebo-controlled cross-over design. In the mucosa of the proximal small intestine of healthy volunteers, probiotic strains from the species Lactobacillus acidophilus, L. casei and L. rhamnosus each induced differential gene regulatory networks and pathways in the human mucosa. Comprehensive analyses revealed that these transcriptional networks regulate major basal mucosal processes, and uncovered remarkable similarity to response profiles obtained for specific bioactive molecules and drugs. This study elucidates how intestinal mucosa of healthy humans perceive different probiotics and provides avenues for rationally designed tests of clinical applications.

Publication Title

Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17140
Gene expression profile of myeloma cells treated with IGF-1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Objective of this study was to find changes in gene expression of mouse multiple myeloma cells upon treatment with IGF-1

Publication Title

IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE8536
The response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

We used genome-wide expression analyses to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty percent of the yeast genome significantly changed expression levels to mediate long-term adaptation to an environment in which ethanol is both a stressor and a carbon source. Within this set, we identify a group of 223 genes, designated as the Fermentation Stress Response (FSR), that are dramatically and permanently induced; FSR genes exhibited changes ranging from four-to eighty-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, was responsible for entry of yeast cells into stationary phase. Ethanol seems to regulate yeast metabolism through hitherto undiscovered regulatory networks during wine fermentation.

Publication Title

Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73661
The effect of vedolizumab (anti-47-integrin) therapy on colonic mucosal gene expression in patients with ulcerative colitis (UC)
  • organism-icon Homo sapiens
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Microarrays were used to investigate the the effect of vedolizumab (VDZ) therapy on colonic mucosal gene expression in UC patients and compared the changes to those observed with infliximab (IFX) therapy.

Publication Title

Effect of vedolizumab (anti-α4β7-integrin) therapy on histological healing and mucosal gene expression in patients with UC.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73599
Celiac disease T cell clone response to CD3/CD28 stimulation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify the CD4+ T cell cytokines responsible for the proliferation of the Lin-IEL lines CD4+ T cell clone L10, which recognises DQ2-glia-1, one of the immunodominant T cell epitopes in celiac disease, was stimulated for 3 hours in IMDM with plate-bound CD3/CD28-specific (2.5 g/ml each) or control antibodies coated onto 6-well non-tissue culture treated plates. Three independent biological replicates were performed, each time including 6 million Ficoll-purified live cells per condition. RNA was purified from these cells using the RNAeasy mini kit (Qiagen, Venlo, the Netherlands). cDNA was amplified using the Applause WT-Amp system (NuGEN technologies, Bemmel, the Netherlands) and biotin-labelled with the Encore Biotin Module (NuGEN). Human Gene 1.0 ST arrays (Affymetrix, High Wycombe, UK) were employed to quantify global gene expression.

Publication Title

CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP017575
Two New Stromal Signatures Stratify Breast Cancers with Different Prognosis
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Purpose: Multiple studies from last decades have shown that the microenvironment of carcinomas plays an important role in the initiation, progression and metastasis of cancer. Our group has previously identified novel cancer stroma gene expression signatures associated with outcome differences in breast cancer by gene expression profiling of two tumors of fibroblasts as surrogates for physiologic stromal expression patterns. The aim of this study is to find additional new types of tumor stroma gene expression patterns. Results: 53 tumors were sequenced by 3SEQ with an average of 29 million reads per sample. Both the elastofibroma (EF) and fibroma of tendon sheath (FOTS) gene signatures demonstrated robust outcome results for survival in the four breast cancer datasets. The EF signature positive breast cancers (20-33% of the cohort) demonstrated significantly better outcome for survival. In contrast, the FOTS signature positive breast cancers (11-35% of the cohort) had a worse outcome. The combined stromal signatures of EF, FOTS, and our previously identified DTF, and CSF1 signatures characterize, in part, the stromal expression profile for the tumor microenvironment for between 74%-90% of all breast cancers. Conclusions: We defined and validated two new stromal signatures in breast cancer (EF and FOTS), which are significantly associated with prognosis. Overall design: Gene expression profiling by 3SEQ was performed on 8 additional types of fibrous tumors, to identify different fibrous tumor specific gene expression signatures. We then determined the significance of the fibrous tumor gene signatures in four publically available breast cancer datasets (GSE1456, GSE4922, GSE3494, NKI Dataset).

Publication Title

Next generation sequencing-based expression profiling identifies signatures from benign stromal proliferations that define stromal components of breast cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE79625
Overexpression of LMO2 causes aberrant human T-cell development in vivo by three potentially distinct cellular mechanisms
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

LMO2 overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as main pre-leukemic event. The effects of LMO2 overexpression on human T-cell development in vivo, however, are unknown. Here we report studies of a humanized mouse model transplanted with LMO2 transduced human hematopoietic stem and progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage although initially multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: 1) a block at the DN/ISP stage, 2) an accumulation of CD4+CD8+ double positive CD3- cells and 3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes

Publication Title

Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact