This data set was generated by the UK Brain Expression Consortium and consists of gene expression data generated from post-mortem human brain samples, dissected from 10 brain regions and originating from a large cohort of neurologically and neuropathologically normal individuals.
Analysis of gene expression data using a linear mixed model/finite mixture model approach: application to regional differences in the human brain.
Sex, Disease, Subject
View SamplesThis data set was generated by the UK Brain Expression Consortium and consists of gene expression data generated from post-mortem human brain samples, dissected from 10 brain regions and originating from a large cohort of neurologically and neuropathologically normal individuals.
Widespread sex differences in gene expression and splicing in the adult human brain.
Sex, Disease, Subject
View SamplesThis data set was generated by the UK Brain Expression Consortium and consists of gene expression data generated from post-mortem human brain samples, dissected from 10 brain regions and originating from a large cohort of neurologically and neuropathologically normal individuals.
Widespread sex differences in gene expression and splicing in the adult human brain.
Sex, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the effects of resistance exercise and resistance training on the skeletal muscle transcriptome profile of 28 young and old adults. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used for the first time to investigate the effects of resistance exercise on the transcriptome in slow-twitch myosin heavy chain (MHC) I and fast-twitch MHC IIa muscle fibers of young and old women. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Subject, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the basal level skeletal muscle transcriptome profile of young and old adults. One vastus lateralis muscle biopsy was obtained in the basal state from 36 different subjects.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part
View SamplesAlthough liganded nuclear receptors have been established to regulate RNA polymerase II (Pol II)-dependent transcription units, their role in regulating Pol III-transcribed DNA repeats remains largely unknown. Here we report that ~2-3% of the ~100,000-200,000 total human DR2 Alu repeats located in proximity to activated Pol II transcription units are activated by the retinoic acid receptor (RAR) in human embryonic stem cells to generate Pol III-dependent RNAs. These transcripts are processed, initially in a DICER-dependent fashion, into small RNAs (~28-65 nt) referred to as repeat-induced RNAs that cause the degradation of a subset of crucial stem-cell mRNAs, including Nanog mRNA, which modulate exit from the proliferative stem-cell state. This regulation requires AGO3-dependent accumulation of processed DR2 Alu transcripts and the subsequent recruitment of AGO3-associated decapping complexes to the target mRNA. In this way, the RAR-dependent and Pol III-dependent DR2 Alu transcriptional events in stem cells functionally complement the Pol II-dependent neuronal transcriptional program. Overall design: RNA-sequencing of polyA selected RNA molecules in NTera2/D1 cells and Global Run On (GRO) assay followed by high throughput sequencing (GRO-seq).
DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation.
Specimen part, Treatment, Subject
View SamplesWe report an applicaton of small RNA sequencing using high throughput next generation sequencing to identify the small RNA content of cell lines. By sequencing over 30 million reads we could identify a new class of small RNAs previousy observed with tiling arrays and mapping to promoter regions of coding genes. We also identified a large number of small RNAs corresponding to internal exons of coding genes. By using different enzymatic treatments and immunoprecipitation experiments, we have determined that both the promoter associated small RNAs as well as ones within the body of the genes bear 5'' cap structures. Overall design: Examination of the expression of small RNAs (<200nt).
Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs.
No sample metadata fields
View SamplesThere is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with nucleoplasmic Sfpq in a RNA-dependent fashion. By HITS-CLIP and transcriptomic analyses, we demonstrated that Sfpq directly controls the miRNA targeting of a subset of crucial miRNA-target mRNAs when it binds locally. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic imprinting of Sfpq-target mRNAs that influence miRNA targeting in both cellular compartments. Mechanistically, Sfpq binds to a sizeable set of long 3'UTR forming long aggregates to optimize miRNA position/recruitment to selected binding sites, as we show for Lin28A mRNA. These results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an unique Sfpq-dependent post-transcriptional strategy for controlling both nuclear and cytoplasmic gene expression takes place in cells during physio-pathological events. Overall design: RNA-seq of P19 cells control and upon SFPQ knockdown both in triplicates
Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq.
Specimen part, Subject
View Samples