refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 78 results
Sort by

Filters

Technology

Platform

accession-icon GSE23073
Transcriptome profiling of genes regulated by RXR and its partners in monocyte-derived dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD14+ human monocytes differentiating into DCs in the presence of IL4 and GM-CSF were treated with agonists for RXR and its partners or vehicle 18 hours after plating (experiment with RXR and permissive partners, donor 1-3) or 14 hours after plating (experiment with nonpermissive partners, donor 4-6). Cells were harvested 12 hours thereafter. Experiments were performed in biological triplicates representing samples from three different donors.

Publication Title

Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE23618
Transcriptome profiling of dendritic cell subtypes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study transcriptome profiling of dendritic cell subtypes was performed using various human dendritic cells.

Publication Title

Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16972
COPD-Specific Gene Expression Signatures of Alveolar Macrophages as well as Peripheral Blood Monocytes Overlap and Correlate with Lung Function
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Rationale: Chronic Obstructive Pulmonary Disease (COPD) is considered a chronic inflammatory disease characterized by progressive airflow limitation and also has significant extrapulmonary (systemic) effects that lead to comorbid conditions. Very little is known about the pathomechanism of the disease.

Publication Title

Chronic obstructive pulmonary disease-specific gene expression signatures of alveolar macrophages as well as peripheral blood monocytes overlap and correlate with lung function.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP042961
X-chromosome dynamics revealed by the RNA interactome and chromosomal binding of CTCF
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

CTCF is a master regulator that plays a role in genome architecture and gene expression. A key aspect of CTCF’s mechanism involves bringing together distant genetic elements for intra- and inter-chromosomal interactions. Evidence from epigenetic processes, such as X-chromosome inactivation (XCI), suggests that CTCF may carry out its functions through interacting RNAs. Using genome-wide approaches to investigate the relationship between CTCF’s RNA interactome and its epigenomic landscape, here we report that CTCF interacts with thousands of transcripts in mouse embryonic stem cells (mESC), many in close proximity to CTCF’s genomic binding sites. Biochemical analysis demonstrates that CTCF is a high-affinity RNA binding protein that contacts RNA directly and specifically. In the XCI model, CTCF binds the active and inactive X-chromosomes allele-specifically. At the X-inactivation center, Tsix RNA binds CTCF and targets CTCF to a region associated with X-chromosome pairing. Our work implicates CTCF-RNA interactions in long-range chromosomal interactions in trans and adds a new layer of complexity to CTCF regulation. The genome-wide datasets reported here will provide a useful resource for further study of CTCF-mediated epigenomic regulation. Overall design: CTCF RNA interactome was identified by UV-crosslinking and immunoprecipitation followed by high-throughput sequencing (CLIP-seq), and was compared to CTCF''s epigenomic landscape as obtained by chromatin immunoprecipitation (ChIP-seq).

Publication Title

Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16387
Licensing of PPARg-regulated gene expression by IL-4-induced alternative macrophage activation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 85 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE16385
Expression data from human macrophages
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human CD14 positive monocytes were purified from healthy volunteers blood and cultured in vitro for 4, 12, 24, 72 hours. While culturing, macrophages were activated alternatively with interleukin-4 (IL-4 100 ng/ml) or classically with interferon-gamma (IFNg 100 ng/ml)+tumor necrosis factor (TNF 50 ng/ml) or left without activation. Simultaneously, macrophages were also treated with vehicle (DMSO:ethanol) or 1mM synthetic PPARg agonist, Rosiglitazone. We used Affymetrix microarrays (U133Plus 2.0) to analyze activation and PPARg-induced gene expression changes.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE25088
PPARg and IL-4-induced gene expression data from wild-type and STAT6 knockout mouse bone marrow-derived macrophages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

C57Bl/6 wild-type and STAT6 KO mice were used to study PPARg and IL-4 signaling. Bone marrow of 3 mice per group was isolated and differentiated to macrophages with M-CSF (20 ng/ml). 20 ng/ml IL-4 was used to induce alternative macrophage activation and 1 uM Rosiglitazone (RSG) was used to activate PPARg. From each mouse 4 samples were generated: 1. M-CSF, 2. M-CSF+RSG, 3. IL-4 and 4. IL-4+RSG. All compounds were added throughout the whole differentiation process, and frech media was added every other day. Control cells were treated with vehicle (DMSO:ethanol). After 10 days, RNA was isolated and gene expression profiles were analyzed using Mouse Genome 430 2.0 microarrays from Affymetrix.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE25123
PPARg and IL-4-induced gene expression data from PPARg +/- LysCre and PPARg fl/- LysCre mouse bone marrow-derived macrophages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Conditional macrophage-specific PPARg knockout mice were generated on C57Bl/6 background by breeding PPARg fl/- (one allele is floxed, the other is null) and lysozyme Cre transgenic mice. PPARg and IL-4 signaling was analyzed on bone marrow-derived macrophages. Bone marrow of 3 mice per group was isolated and differentiated to macrophages with M-CSF (20 ng/ml). 20 ng/ml IL-4 was used to induce alternative macrophage activation and 1 uM Rosiglitazone (RSG) was used to activate PPARg. From each mouse 4 samples were generated: 1. M-CSF, 2. M-CSF+RSG, 3. IL-4 and 4. IL-4+RSG. All compounds were added throughout the whole differentiation process, and fresh media was added every other day. Control cells were treated with vehicle (DMSO:ethanol). After 10 days, RNA was isolated and gene expression profiles were analyzed using Mouse Genome 430 2.0 microarrays from Affymetrix.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE16386
Expression data from human alternatively activated macrophages
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human CD14 positive monocytes were purified from healthy volunteers blood and cultured in vitro for 6 hours. While culturing, macrophages were activated alternatively with interleukin-4 (IL-4 100 ng/ml). Simultaneously, macrophages were also treated with vehicle (DMSO:ethanol) or 1uM synthetic PPARg agonist, Rosiglitazone. We used Affymetrix microarrays (U133Plus 2.0) to analyze activation and PPARg-induced gene expression changes.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE36233
Molecular signatures of human iPSCs highlight sex differences and cancer genes
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared human female hiPSC lines (all derived from IMR-90 fibroblasts) that were XIST RNA-positive and XIST RNA-negative. We also examined the gene expression patterns for 2 female hIPSCs (derived from different disease model fibroblasts) that were also negative for XIST RNA. hiPS 12D-1 is derived from Huntington's Disease patient and 6C-1 is derived from a Type I Diabetes Mellitus patient (Park et al Nature 2008).

Publication Title

Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact