Epidemiological studies provide strong evidence that consumption of cruciferous vegetables, such as broccoli, can significantly reduce the risk of developing cancers. Sulforaphane (SFN), a phytochemical derived from cruciferous vegetables, induces anti-proliferative and pro-apoptotic responses in prostate cancer cells, but not in normal prostate cells. The mechanisms responsible for these specific chemopreventive properties remain unclear. We utilized RNA sequencing to test the hypothesis that SFN modifies the expression of genes that are critical in prostate cancer progression. Normal prostate epithelial cells, and androgen-dependent and androgen-independent prostate cancer cells were treated with 15 µM SFN and the transcriptome was determined at 6 and 24 hour time points. SFN altered the expression of ~3,000 genes in each cell line and the response was highly dynamic over time. SFN influenced the expression of genes in functional groups and pathways that are critical in cancer including cell cycle, apoptosis and angiogenesis, but the specific effects of SFN differed depending on the state of cancer progression. Network analysis suggested that a transcription factor that is overexpressed in many cancers, Specificity protein 1 (Sp1), is a major mediator of SFN-induced changes in gene expression. Nuclear Sp1 protein was significantly decreased by 24 hour SFN treatment in prostate cancer cells, while a related transcription factor, Sp3 protein was only modestly decreased in androgen-independent prostate cancer cells. Overall, the data show that SFN significantly affects gene expression in normal and cancer cells, with key targets in chemopreventive processes, making it a promising dietary anti-cancer agent. Overall design: Examination of how the transcriptome of normal and prostate cancer cells is altered by treatment with sulforaphane
Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention.
Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Changes in microRNA and mRNA expression with differentiation of human bronchial epithelial cells.
Specimen part
View SamplesAsthma is a complex, chronic respiratory disease with marked clinical and pathophysiological heterogeneity. Distinct inflammatory phenotypes of eosinophilic, mixed, neutrophilic and paucigranulocytic asthma are identified in patients, but most in vivo mouse models, studying asthma mechanisms, mimic only eosinophilic phenotype in humans. The detailed unbiased in vivo studies on molecular responses among different kinds of inflammation in asthma models are lacking. Therefore, we developed mouse models representing three different inflammatory phenotypes of airway inflammation, namely eosinophilic, mixed, and neutrophilic asthma via different methods of house dust mite sensitisation.
Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice.
Specimen part
View SamplesNormal human bronchial epithelial (NHBE) cells cultured in an air-liquid interface (ALI) system form a polarized, pseudostratified epithelium composed of basal, ciliated and goblet cells that closely resemble the in vivo airway epithelium structure. ALI cultures of NHBE cells provide a unique in vitro system to investigate airway epithelial biology, including developmental, structural and physiologic aspects. In this study, we wanted to investigate mRNA expression patterns during airway epithelium differentiation.
Changes in microRNA and mRNA expression with differentiation of human bronchial epithelial cells.
Specimen part
View SamplesWe aimed to determine the characteristic of 3 different ILC subsets (ILC1, 2 and 3) isolated from human blood. Overall design: mRNA profile of ILC1, ILC2 and ILC3
Gene expression signatures of circulating human type 1, 2, and 3 innate lymphoid cells.
Subject
View SamplesBalanced immune responses in airways of patients with asthma are crucial to succesful clearance of viral infection and proper asthma control.
Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19.
Subject, Time
View SamplesIn order to better understand the systemic immunological responses in a clinical cohort of obese and non-obese asthmatics and healthy subjects, we sought to analyze gene expression from whole blood. We collected whole blood samples from 156 donors and performed gene expression analysis of these samples and identified differentially expressed genes (DEGs) in each obese and/or asthma group relative to healthy volunteers.
Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients.
Sex, Age, Specimen part, Subject
View SamplesWe identified a congenic mouse with an introgressed region from the A/J donor inbred strain on an inbred C57BL/6J background that showed a reduced locomotor stimulant response to methamphetamine. We conducted microarray analysis of the striatum from drug-naive female and male mice that were 6-9 weeks old. The congenic region is on chromosome 11 and spans approximately 84-96 Mb. There were two groups of mice used in the analysis: B6 control mice versus congenic mice. Congenic mice were collapsed across heterozygous and homozygous genotypes.
Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis.
Sex
View SamplesMicrocephaly and medulloblastoma result from mutations that compromise genomic stability. We report that Atr, which is mutated in the microcephalic disorder Seckel syndrome, is required to maintain chromosomal integrity during postnatal cerebellar neurogenesis. Atr deletion in cerebellar granule neuron progenitors (CGNPs) induced proliferation-associated DNA damage, p53 activation, apoptosis, and cerebellar hypoplasia. Co-deletions of either Bax and Bak or p53 prevented apoptosis in Atr-deleted CGNPs, but failed to fully rescue cerebellar growth. Atr-deficient CGNPs showed impaired cell cycle checkpoint function and continued to proliferate, accumulating chromosomal abnormalities. RNA-Seq demonstrated that the transcriptional response to Atr-deficient proliferation was p53-driven. Acute Atr inhibition in vivo by nanoparticle-formulated VE-822 reproduced the disruptions seen with Atr deletion. Our data show that p53-driven apoptosis and senescence, and non-apoptotic cell death redundantly limit growth in Atr-deficient progenitors. These overlapping mechanisms that suppress growth in Atr-disrupted CGNPs may be exploited for treatment of CGNP-derived medulloblastoma using Atr inhibition. Overall design: RNA-Seq on total RNA from P3 mouse cerebella of Math1-Cre;Atr-loxP/loxP;Bax-loxP/loxP;Bak--/- (n=5), Math1-Cre;Bax-loxP/loxP;Bak--/- (n=4), Math1-Cre;Atr-loxP/loxP;p53-loxP/loxP (n=5), and Math1-Cre;p53-loxP/loxP (n=3), all run in 2 lanes
ATR maintains chromosomal integrity during postnatal cerebellar neurogenesis and is required for medulloblastoma formation.
Specimen part, Cell line, Subject
View SamplesThe combination of JQ1 and Vemurafenib acted synergistically in BRAF-mutant cell lines, resulting in marked apoptosis in vitro, with up-regulation of pro-apoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti-apoptotic genes significantly down-regulated. Overall design: 16 samples analyzed from 8 mice (each mouse was bearing two tumors, one on each flank) in 4 treatment groups (control, vemurafenib alone, JQ1 alone, JQ1+vemurafenib)
BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma.
Cell line, Treatment, Subject
View Samples