The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, pep1 mutants fail to penetrate the epidermal cell wall and elicit a strong plant defense response. Using Affymetrix maize arrays we identified about 110 plant genes which are differentially regulated in pep1 and wild type infections during the penetration stage.
Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells.
No sample metadata fields
View SamplesTranscript profiling analysis of csn4-1 light grown mutant seedlings compared to wild type using Arabidopsis ATH1 GeneChip array
Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development.
No sample metadata fields
View SamplesActivated B-cell-like (ABC) and germinal center B-cell-like (GCB) diffuse large B-cell lymphoma (DLBCL) represent the two major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these two subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) alpha/delta (PI3Ka/d) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor kappa-B (NF-kB) signaling, prompting us to combine AZD8835 with the Brutons tyrosine kinase (BTK) inhibitor ibrutinib. This combination was highly synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors.
Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL.
Cell line, Treatment
View SamplesGene expression of periphereal blood lymphocytes (PBLs) of patients with metastatic renal cell carcinoma pre and post immunotherapy was accessed and pre therapy gene expression was compared to PBL gene expression of healthy volunteers
Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, interferon-α and dendritic cell vaccine.
Specimen part, Disease, Disease stage
View SamplesBrain perivascular cells have been recently identified as new mesodermal cell type of the human brain.
Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.
Specimen part
View SamplesConditional ablation of Ezh2 in the neural crest lineage results in loss of the neural crest-derived mesenchymal derivatives. In this data sheet we determine gene expression analysis in Ezh2lox/lox and Wnt1Cre Ezh2lox/lox in E11.5 mouse BA1 cells.
Ezh2 is required for neural crest-derived cartilage and bone formation.
Specimen part
View SamplesPurpose:
Sequential gene expression profiling during treatment for identification of predictive markers and novel therapeutic targets in chronic lymphocytic leukemia.
Treatment
View SamplesThe replication of a genomic region during S-phase can be highly dynamic between cell types that differ in transcriptome and epigenome. Replication timing has been positively correlated with several histone modifications that occur at active genes, while repressive histone modifications mark late replicating regions. This raises the question if chromatin modulates the initiating events of replication. To gain insights into this question we have studied the function of heterochromatin protein 1 (HP1), a reader of to the repressive histone lysine 9 methylation of H3, in genome-wide organization of replication. Cells with reduced levels of HP1 show an advanced replication timing of centromeric repeats in agreement with the model that repressive chromatin mediates the very late replication of large clusters of constitutive heterochromatin. Surprisingly however regions with high levels of interspersed repeats on the chromosomal arms in particular on chromosome 4 and in pericentromeric regions of chromosome 2 behave differently. Here loss of HP1 results in delayed replication timing. The fact that these regions are bound by HP1 suggests a direct effect. Thus while HP1 mediates very late replication of centromeric DNA it is also required for early replication of autosomal regions with high levels of repeats. This observation of opposing functions of HP1 suggests a model where repeat inactivation on autosomes is required for proper activation of origins of replication that fire early, while HP1 mediated repression at constitutive heterochromatin is required to ensure replication of centromeric repeats at the end of S phase.
Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB.
Cell line
View SamplesTo gain global insights into the role of the well-known repressive splicing regulator PTB we analyzed the consequences of PTB knockdown in HeLa cells using high-density oliogonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB repressed and activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons, but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTBactivated to a PTB-repressed exon. Our results demonstrate that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB.
Cell line
View Samples