The Epidermal Growth Factor Receptor 2 (ERBB2 or HER2) is amplified and overexpressed in approximately 20% of invasive breast cancers and is associated with metastasis and poor prognosis. Here we describe the role of a constitutively active splice variant of HER2 (Delta-HER2) in human mammary epithelial cells. Overexpression of Delta-HER2 in human mammary cells decreased apoptosis and increased proliferation and expression of epithelial-to-mesenchymal markers. It also induced invasion in three-dimensional cultures and promoted tumorigenicity and metastasis in vivo. In contrast, similar overexpression of wild-type HER2 failed to evoke the same effects. Unbiased protein-tyrosine phosphorylation profiling revealed a significant increase in phosphorylation of several key signaling proteins upon Delta-HER2 expression, some of which not previously shown to belong to the HER2 pathway. In addition, microarray analysis revealed the expression of a set of genes specifically associated with Delta-HER2 expression. We found those genes to be highly expressed in ER-negative, high grade and metastatic primary breast tumors. Altogether, these results provide new insights into the function of a tumorigenic splice variant of HER2 and the signaling cascade deriving from its activity
Mammary tumor formation and metastasis evoked by a HER2 splice variant.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Cell line
View SamplesThe first bona fide PTP proto-oncogene was the Src-homology 2 domain-containing phosphatase SHP2 (encoded by PTPN11), an ubiquitously expressed PTP that transduces mitogenic, pro-survival, cell fate and/or pro-migratory signals from numerous growth factor-, cytokine- and extracellular matrix receptors. In malignancies, SHP2 is hyperactivated either downstream of oncoproteins or by mutations.We provide analysis of the breast cancer cells BT474 grown as xenografts in the presence or absence of SHP2 for 30 days.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Cell line
View SamplesThe first bona fide PTP proto-oncogene was the Src-homology 2 domain-containing phosphatase SHP2 (encoded by PTPN11), an ubiquitously expressed PTP that transduces mitogenic, pro-survival, cell fate and/or pro-migratory signals from numerous growth factor-, cytokine- and extracellular matrix receptors. In malignancies, SHP2 is hyperactivated either downstream of oncoproteins or by mutations.We provide analysis of a primary triple-negative breast tumor grown as xenografts in the presence or absence of SHP2 for 30 days.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
No sample metadata fields
View SamplesThe first bona fide PTP proto-oncogene was the Src-homology 2 domain-containing phosphatase SHP2 (encoded by PTPN11), an ubiquitously expressed PTP that transduces mitogenic, pro-survival, cell fate and/or pro-migratory signals from numerous growth factor-, cytokine- and extracellular matrix receptors. In malignancies, SHP2 is hyperactivated either downstream of oncoproteins or by mutations.We provide analysis of the mammary epithelial cells MCF10A overexpressing human HER2 and HER3 and grown in 3D cultures for 15 days in the presence or absence of SHP2.
Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
Cell line
View SamplesExpression profile of FLA2 (highest LSC frequency) and FLB1 (lowest LSC frequency) leukemias.
A role for GPx3 in activity of normal and leukemia stem cells.
Specimen part
View SamplesResistance of Saccharomyces cerevisiae to high furfural concentration is based on NADPH-dependent reduction by at least two oxireductases.
Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
No sample metadata fields
View SamplesBipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
A new mouse model for mania shares genetic correlates with human bipolar disorder.
Sex, Specimen part
View SamplesThe transition from the non-maternal to the maternal state is characterized by a variety of CNS alterations that support the care of offspring. The septum (including lateral and medial portions) is a brain region previously linked to various emotional and motivational processes, including maternal care. In this study, we used microarrays (PLIER algorithm) to examine gene expression changes in the septum of postpartum mice and employed gene set enrichment analysis (GSEA) to identify possible regulators of altered gene expression. Genes of interest identified as differentially regulated with microarray analysis were validated with quantitative real-time PCR. We found that fatty acid binding protein 7 (Fabp7) and galanin (Gal) were downregulated, whereas insulin-like growth factor binding protein 3 (Igfbp3) was upregulated in postpartum mice compared to virgin females. These genes were previously found to be differentially regulated in other brain regions during lactation. We also identified altered expression of novel genes not previously linked to maternal behavior, but that could play a role in postpartum processes, including glutamate-ammonia ligase (Glul) and somatostatin receptor 1 (Sstr1) (both upregulated in postpartum). Genes implicated in metabolism, cell differentiation, or proliferation also exhibited altered expression. Unexpectedly, enrichment analysis revealed a high number of microRNAs, transcription factors, or conserved binding sites (177 with corrected P-value <0.05) that were significantly linked to maternal upregulated genes, while none were linked to downregulated genes. MicroRNAs have been linked to placenta and mammary gland development, but this is the first indication they may also play a key role in sculpting the maternal brain. Together, this study provides new insights into genes (along with possible mechanisms for their regulation) that are involved in septum-mediated adaptations during the postpartum period.
Gene expression changes in the septum: possible implications for microRNAs in sculpting the maternal brain.
Specimen part
View SamplesThe HSC niche factor SCF is required for HSC maintenance. Using an Scf-GFP knockin mouse, we have identified a perivascular cell type in the bone marrow expressing high level of Scf.
Endothelial and perivascular cells maintain haematopoietic stem cells.
Specimen part
View Samples