Smyd3 is a histone methyltransferase implicated in tumorigenesis. Here we show that Smyd3 expression in mice is required but not sufficient for chemically induced liver and colon cancer formation. In these organs Smyd3 is functioning in the nucleus as a direct transcriptional activator of several key genes involved in cell proliferation, epithelial-mesenchymal transition, JAK/Stat3 oncogenic pathways, as well as of the c-myc and b-catenin oncogenes. Smyd3 specifically interacts with H3K4Me3-modified histone tails and is recruited to the core promoter regions of many but not all active genes. Smyd3 binding density on target genes positively correlates with increased RNA Pol-II density and transcriptional outputs. The results suggest that Smyd3 is an essential transcriptional potentiator of a multitude of cancer-related genes. Overall design: Standard Smyd3-deficient (Smyd3-KO) mice were generated using gene-trap ES cell clones (AS0527 from International Gene Trap Consortium), in which a selection cassette, containing the splice acceptor site from mouse EN2 exon 2 followed by the beta-galactosidase and neomycin resistance gene fusion gene and the SV40 polyadenylation sequence was inserted into the 5th intron of the Smyd3 gene. The resulting mice were devoid of Smyd3 mRNA and protein in all tissues, including liver and colon. For the generation of Smyd3-Tg mice the open reading frame of the mouse Smyd3 cDNA, which contained 3 Flag epitopes at the 3’ end was inserted into the StuI site of the pTTR1-ExV3 plasmid (Yan et al, 1990). The 6.8 kb HindIII fragment containing the mouse transthyretin enhancer/promoter, intron 1, Smyd3 cDNA, three Flag epitopes and SV40 poly-A site was used to microinject C57Bl/6 fertilized oocytes. Founder animals were identified by Southern blotting and crossed with F1 mice to generate lines. Specific overexpression in the liver was tested by RT-PCR analysis in different tissues.
Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development.
No sample metadata fields
View SamplesPioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine and colon. Here we derived organoids from mouse gallbladder tissue (gallbladder organoids), from mouse liver (including the extrahepatic biliary ducts and gallbladder; liver organoids) and from mouse small intestine tissue (intestinal organoids). RNA was prepared from these organoids and used to assay expression of 21,258 genes using Affymetrix gene expression arrays. RNA was also prepared from mouse gallbladder, liver and small intestine tissues and used to assay gene expression in these tissues. Finally, gallbladder organoids were induced to differentiate by removing R-spondin 1 and noggin from the culture media and subjected to gene expression array analysis.
R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders.
Specimen part
View SamplesThe overall goal of this project is to investigate the role of Erk2-mediated signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of palate tissue from wild type mice as well as those with a neural crest specific conditional inactivation of the Erk2 gene. The latter mice exhibit micrognathia, tongue defects and cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions.
Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
Sex, Specimen part
View SamplesThe anticarcinogenic activity of hydroxytyrosyl ethyl ether (HTy-Et) compared to its precursor hydroxytyrosol (HTy) has been studied in human Caco-2 colon adenocarcinoma cells.
Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol.
Specimen part, Disease, Disease stage, Cell line
View SamplesBackground Correct achievement of early ovarian folliculogenesis is a crucial phase for further ovarian function. This process is closely regulated by cell-cell interactions and coordinated expression of genes from oocyte and granulosa cells. But, despite of the large number of studies, little is known about the precise gene expression patterns driving early folliculogenesis. The experimental limitations concerned the very small size of these follicles and the mixture of the different developmental stages within an ovary that make the study of isolated follicular components much more difficult. The recently developed laser capture microdissection (LCM) technique coupled with microarrays experiments is promising in addressing the molecular specificity of each follicular compartment. Nevertheless, the isolation of unique cells or group of cells is still challenging to maintain RNA quality during this process and to obtain sufficient amount of RNA. In this study, we described a method allowing the analysis of oocyte and granulosa cells gene expression during the first stages of sheep early folliculogenesis. Results First we developed a new fixation protocol using a frizzed 70% ethanol fixation solution that ensures correct single cell capture and RNA integrity during microdissection time. After LCM capture of the compartments and follicular stages, RNA extraction and amplification, the expression of 6 oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and 3 granulosa cell-specific genes (KITLG, GATA4, AMH) confirmed the purity of the samples and documented their ovine expression profiles. Then, using bovine Affymetrix chip, we identified for the first time, a global gene expression for each follicular compartment during early developmental stages. Particularly the granulosa cell data set is quite unique. 1050 granulosa cell specific transcripts compared to oocyte and 759 oocyte specific transcripts were detected. The analysis of the expression of 2 genes (SIRT7, FST) confirmed this specificity of expression. Finally, the integration of the data stated the 3 main physiological events involved in early folliculogenesis and provided descriptive elements that confirmed the relevance and the potential of the LCM-derived RNAs. Conclusions This method should contribute through an additional genome wide expression profiling to give insights on molecular mechanisms involved in stage transitions and cell type interplays.
Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection.
Age, Specimen part
View SamplesWe sought to obtain gene signature specific of high oxidative phsophorylation function.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
Cell line, Treatment
View SamplesIt has been hypothesized that chemotherapy resistant human acute myeloid leukemia (AML) cells are enriched in an immature phenotype, cellular quiescence and leukemic initiating cells (LICs). However, these hypotheses have never been validated completely in vivo. We have developed a physiologically relevant chemotherapeutic approach with cytosine arabinoside AraC using patient-derived xenograft (PDX) models. AraC-treated AML cells are not consistently enriched for either immature cells or quiescent cells. AraC treatment does not enrich for LICs as measured by limiting dilution in secondary transplantations. Rather chemotherapy resistant cells in vivo have high levels of reactive oxygen species (ROS) and a gene signature consistent with oxidative phosphorylation (OXPHOS). Treatment of human HIGH OXPHOS but not LOW OXPHOS AML cell lines showed chemotherapy resistance in vivo, showing that essential mitochondrial functions make significant contributions to AraC resistance in AML. Accordingly, targeting mitochondrial OXPHOS metabolism through the inhibition of mitochondrial protein synthesis, the electron transfer chain or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and strongly enhanced anti-leukemic effects of AraC in AML cells. These results demonstrate that chemotherapy resistance in AML is not necessarily associated with stemness but is highly dependent on a distinct oxidative metabolism, and that the HIGH OXPHOS gene signature is a robust hallmark of the AraC response in PDX and a promising therapeutic avenue to treat AML residual disease.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
Specimen part, Disease
View SamplesIt has been hypothesized that chemotherapy resistant human acute myeloid leukemia (AML) cells are enriched in an immature phenotype, cellular quiescence and leukemic initiating cells (LICs). However, these hypotheses have never been validated completely in vivo. We have developed a physiologically relevant chemotherapeutic approach with cytosine arabinoside AraC using patient-derived xenograft (PDX) models. AraC-treated AML cells are not consistently enriched for either immature cells or quiescent cells. AraC treatment does not enrich for LICs as measured by limiting dilution in secondary transplantations. Rather chemotherapy resistant cells in vivo have high levels of reactive oxygen species (ROS) and a gene signature consistent with oxidative phosphorylation (OXPHOS). Treatment of human HIGH OXPHOS but not LOW OXPHOS AML cell lines showed chemotherapy resistance in vivo, showing that essential mitochondrial functions make significant contributions to AraC resistance in AML. Accordingly, targeting mitochondrial OXPHOS metabolism through the inhibition of mitochondrial protein synthesis, the electron transfer chain or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and strongly enhanced anti-leukemic effects of AraC in AML cells. These results demonstrate that chemotherapy resistance in AML is not necessarily associated with stemness but is highly dependent on a distinct oxidative metabolism, and that the HIGH OXPHOS gene signature is a robust hallmark of the AraC response in PDX and a promising therapeutic avenue to treat AML residual disease.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
Specimen part, Disease, Treatment, Subject
View SamplesThe Epidermal Growth Factor Receptor 2 (ERBB2 or HER2) is amplified and overexpressed in approximately 20% of invasive breast cancers and is associated with metastasis and poor prognosis. Here we describe the role of a constitutively active splice variant of HER2 (Delta-HER2) in human mammary epithelial cells. Overexpression of Delta-HER2 in human mammary cells decreased apoptosis and increased proliferation and expression of epithelial-to-mesenchymal markers. It also induced invasion in three-dimensional cultures and promoted tumorigenicity and metastasis in vivo. In contrast, similar overexpression of wild-type HER2 failed to evoke the same effects. Unbiased protein-tyrosine phosphorylation profiling revealed a significant increase in phosphorylation of several key signaling proteins upon Delta-HER2 expression, some of which not previously shown to belong to the HER2 pathway. In addition, microarray analysis revealed the expression of a set of genes specifically associated with Delta-HER2 expression. We found those genes to be highly expressed in ER-negative, high grade and metastatic primary breast tumors. Altogether, these results provide new insights into the function of a tumorigenic splice variant of HER2 and the signaling cascade deriving from its activity
Mammary tumor formation and metastasis evoked by a HER2 splice variant.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View Samples