This experiment was designed to indentify RNAs making direct contact with EZH2 in mouse embryonic stem cells Overall design: E14 with an integrated transgene encoding HA-EZH2 were pulsed with 4-SU, irradiated with UV, and subjected to HA immunoprecipitation.
PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells.
Cell line, Subject
View SamplesThis experiment was designed to obtain the polyA+ transcriptome in E14 ESCs Overall design: PolyA+ RNA was extracted and purified from two separate clones of E14, which were treated as biological replicate
PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells.
Cell line, Subject
View SamplesOne of the most common genetic alterations in acute myeloid leukemia is the internal tandem duplication (ITD) in the FLT3 receptor for cytokine FLT3 ligand (FLT3L). The constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on normal hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. We report that young pre-leukemic mice with the Flt3ITD knock-in allele manifest an expansion of all DCs including classical (cDCs) and plasmacytoid (pDCs). The expansion originated in DC progenitors, occurred in a cell-intrinsic manner and was further enhanced in Flt3ITD/ITD mice. The mutation caused the downregulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T cells (Tregs). Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity in the absence of Tregs. Thus, the FLT3-ITD mutation directly affects DC development, thereby indirectly modulating T cell homeostasis and supporting Treg expansion. This effect of FLT3-ITD may subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. Overall design: Sorted splenic dendritic cell subsets from either Flt3+/+ or Flt3ITD/+ mice were sequenced for mRNA profiling. For each subset per genotype contains 2-3 replicates, all from independent experiments.
Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.
Specimen part, Cell line, Subject
View SamplesIn this experiment, we sought to analyze how the transcriptome of WT, ?5|6, and ?5|6:7|9 cells vary during differentiation of ESCs into cervical motor neurons Overall design: 3 lines (WT, ?5|6, ?5|6:7|9)
CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
No sample metadata fields
View SamplesA gene co-expression network analysis has been conducted to identify T2D-associated gene modules. Donors 1-48 were used for the initial analysis and donors 49-80 for the replication and were normalized separately in this study
Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.
Sex, Age, Specimen part
View SamplesNaturally occurring variations of Polycomb Repressive Complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, Autism Susceptibility Candidate 2 (AUTS2). While AUTS2 is often disrupted in patients with neuronal disorders, the underlying mechanism is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1-AUTS2 thwarts PRC1 repressive activity and AUTS2-mediated recruitment of P300 leads to gene activation. ChIP-seq of AUTS2 shows that it regulates neuronal gene expression through promoter association. Conditional CNS targeting of Auts2 in a mouse model leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases. Overall design: mRNA profiles of P1 brain from wild type mice were generated by deep sequencing
An AUTS2-Polycomb complex activates gene expression in the CNS.
No sample metadata fields
View SamplesISL1 is expressed in cardiac progenitor cells and plays critical roles in cardiac lineage differentiation and heart development. Cardiac progenitor cells hold great potential for clinical and translational applications. However the mechanisms underlying ISL1 function in cardiac progenitor cells have not been fully elucidated. Here we uncover a hierarchical role of ISL1 in cardiac progenitor cells, showing that ISL1 directly regulates hundreds of potential downstream targets that are implicated in cardiac differentiation, through an epigenetic mechanism. Specifically, ISL1 promotes the demethylation of tri-methylation of histone H3K27 (H3K27me3) at the enhancers of key downstream target genes, including Myocd and Mef2c, which are core cardiac transcription factors. ISL1 physically interacts with JMJD3, a H3K27me3 demethylase, and conditional depletion of JMJD3 leads to impaired cardiac progenitor cell differentiation, phenocopying that of ISL1 depletion. Interestingly, ISL1 is not only responsible for the recruitment of JMJD3 to specific target loci during cardiac progenitor differentiation, but also modulates its demethylase activity. In conclusion, ISL1 and JMJD3 partners to alter the cardiac epigenome, instructing gene expression changes that drive cardiac differentiation. Overall design: To investigate the transcriptional effects of ISL1 binding, we performed RNA-seq on day 7 Isl1 knock-down EBs versus control EBs.
ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells.
Specimen part, Cell line, Treatment, Subject
View SamplesRNA polymerase II is decreased on heat shock-induced genes when the CTD phosphatase Fcp1 is knocked down in Drosophila S2 cells. We examined transcriptionally-engaged Pol II genome-wide with GRO-seq to determine if other genes are similarly affected. Overall design: Two biological replicates of nascent RNA sequencing
Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes.
Cell line, Subject
View SamplesThis experiment sought to determine the genome-wide interactome of CTCF in human cells. Overall design: PAR-CLIP seq for CTCF was performed in U2OS cells in 2 biological replicates
CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53.
No sample metadata fields
View SamplesSFMBT1 is a poorly characterized mammalian MBT domain-containing protein homologous to Drosophila SFMBT, a Polycomb group protein involved in epigenetic regulation of gene expression. Here, we show that SFMBT1 regulates transcription in somatic cells and during spermatogenesis through the formation of a stable complex with LSD1 and CoREST. When bound to its gene targets, SFMBT1 recruits its associated proteins and causes chromatin compaction and transcriptional repression. SFMBT1, LSD1, and CoREST share a large fraction of target genes including those encoding replication-dependent histones. Simultaneous occupancy of histone genes by SFMBT1, LSD1, and CoREST is regulated during the cell cycle and correlates with the loss of RNA polymerase II at these promoters during G2, M, and G1. The interplay between the repressive SFMBT1–LSD1–CoREST complex and RNA polymerase II contributes to the timely transcriptional regulation of histone genes in human cells. SFMBT1, LSD1, and CoREST also form a stable complex in germ cells and their chromatin binding activity is regulated during spermatogenesis. Overall design: RNA-seq in HeLaS3 cells ctrl compared to triple knockdown for SFMBT1, CoREST, and LSD1
SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors.
Cell line, Treatment
View Samples