This SuperSeries is composed of the SubSeries listed below.
Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders.
Age, Specimen part
View SamplesWe and others have previously observed that adipocytes and preadipocytes taken from different adipose tissue depots are characterized by differential expression of developmental and patterning genes (Dankel et al., 2010; Ferrer-Lorente et al., 2014; Gesta et al., 2006; Lee et al., 2017a; Lee et al., 2013; Macotela et al., 2012; Tchkonia et al., 2007; Yamamoto et al., 2010). To investigate how adipocyte heterogeneity and differences in the expression of developmental genes might impact the biology of adipocytes and preadipocytes, we created preadipocyte cell lines from the stromovascular fraction (SVF) isolated from the scapular white, inguinal, perigonadal, perirenal, and mesenteric fat pads of 6-week old male Immortomouse (Jat et al., 1991).During routine culture of the subcutaneous and visceral/perigonadal clonal cell lines, we observed extreme variation in media acidification rates that was unrelated to the fat pad of origin, the differentiation capacity of the cells, or the rate of their proliferation, suggesting metabolic heterogeneity. To further investigate this possibility, 24 clonal cell lines (12 each from subcutaneous and perigonadal fat) were selected based on variable media acidification rates, and their mRNA expression pattern determined by microarray analysis. The expression data was clustered using three different algorythms, and the consensus was used to categorize each type of adipose tissue.
Developmental and functional heterogeneity of white adipocytes within a single fat depot.
Specimen part, Cell line
View SamplesTo investigate the effects of BCL11B on T-cell differentiation, we performed gain of function studies in cells with a T-lineage differentiation arrest, namely T-ALL cells. Gene expression profiling by RNA-Seq demonstrated that BCL11B overexpression induced transcriptional changes consistent with T-cell differentiation as early as 72 hours after transduction, indicating a rapid regulatory effect of BCL11B on the T-lineage transcriptional program and supporting an important role for BCL11B in human T-cell differentiation. Overall design: T-ALL cells were transduced with a BCL11B-GFP expression vector (overexpressing cells) or an empty GFP vector (control cells). GFP+ cells were isolated by fluorescence activation cell sorting (FACS) at 72 hours post transduction and analyzed by RNA-Seq to determine the effect of BCL11B on the transcriptome of T-ALL cells.
The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.
Subject
View SamplesTo elucidate the transcriptional ‘landscape’ that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNA (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus. Overall design: We performed RNA-Seq of 10 distinct cell types isolated by fluorescence activated cell sorting (FACS). From BM, we isolated CD34+CD38neglinneg cells, a population highly enriched for HSC, as well as three lymphoid progenitor populations; LMPP (CD34+CD45RA+CD38+CD10neg CD62Lhilinneg), CLP (CD34+CD38+CD10+CD45RA+linneg ) and fully B cell committed progenitors (BCP, CD34+CD38+CD19+). From thymus we isolated three CD34+ subsets; Thy1 (CD34+CD7neg CD1aneg CD4negCD8neg), Thy2 (CD34+CD7+CD1aneg CD4negCD8neg), and Thy 3 (CD34+CD7+CD1a+CD4negCD8neg), as well as fully T cell committed populations CD4+CD8+ (Thy 4), CD3+CD4+CD8neg (Thy5) and CD3+CD4neg CD8+ (Thy6).
Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.
No sample metadata fields
View SamplesMore than 200 direct CodY target genes in Staphylococcus aureus were identified by genome-wide analysis of in vitro DNA binding. This analysis, which was confirmed for some genes by DNase I footprinting assays, revealed that CodY is a direct regulator of numerous transcription units associated with amino acid biosynthesis, transport of macromolecules and virulence. The virulence genes regulated by CodY fell into three groups. One group was dependent on the Agr system for its expression; these genes were indirectly regulated by CodY through its repression of the agr locus. A second group was regulated directly by CodY. The third group, which includes genes for alpha-toxin and capsule synthesis, was regulated by CodY in two ways, i.e., by direct repression and by repression of the agr locus. Since S. aureus CodY was activated in vitro by the branched chain amino acids and GTP, CodY appears to link changes in intracellular metabolite pools with the induction of numerous adaptive responses, including virulence.
Direct targets of CodY in Staphylococcus aureus.
No sample metadata fields
View SamplesWe performed the integrative transcriptome analysis of human esophageal squamous cell carcinoma (ESCC) using Illumina high-throughput sequencing. A total of 187 million 38bp sequencing reads were generated containing 7 billion bases for three pairs of matched patient-derived ESCC clinical specimens and their adjacent non-tumorous tissues. By investigating the digital gene expression profiling, we found 1425 genes significantly differentially expressed and detected more than 9000 SNPs across all six samples. We also identified protein tyrosine kinase 6 (PTK6) as a novel tumor suppressor gene, which is critical in ESCC development. Overall design: Analysis of whole transcriptome from 3 paired patient-derived ESCC clinical specimens and their adjacent non-tumorous tissues.
Transcriptome profiling of esophageal squamous cell carcinoma reveals a long noncoding RNA acting as a tumor suppressor.
No sample metadata fields
View SamplesmRNA microarray analysis of bone marrow derived macrophages treated under four conditions, including Nave (N). Bone marrow derived macrophages (BMDM) were derived from the bone marrow of mice and cultured in the presence of PAO, IFN-gamma, or lipopolysaccharide (LPS). Profiled groups include Naive, LPS, IFN, PAO.
Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.
Sex, Specimen part
View SamplesMouse skin fibroblasts (MSFs) were obtained from a FASST (Fibroblasts Accelerate Stromal-Supported Tumorigenesis) mouse. This mouse model allows for spatial and temporal control for senescence induction by using a stromal specific Cre-recombinase driven by the pro-collagen-alpha II promoter. The stromal specific Cre activates expression of the p27IRESGFP transgene that is expressed from the ROSA locus. We cultured the MSFs in vitro, induced senescence using 10uM tamoxifen added to the media. Non-senescent cells were treated with equal volume of vehicle alone (ethanol). Upon tamoxifen treatment, cells were moved to a modular incubation chamber and maintained at 3% oxygen at 37 degrees celcius for 12 days total before collection. At the time of collection, cells were trypsynized and pelleted by centrifugation. The cells were lysed using Trysol reagent and RNA was isolated using a RiboPure RNA isolation kit (Ambion). Overall design: For this study, 2 treatment groups were analyzed (non-senescent, EtOH samples and senescent, TAM samples). Each treatment group was performed 3 times for a total of 6 samples for analysis. The gene expression analysis is a comparison of expression in senescent (TAM) vs non-senescent (EtOH) mouse skin fibroblasts.
Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis.
Specimen part, Cell line, Treatment, Subject
View SamplesTo identify potential target genes regulated by BMP9 in MSCs, we used microarray to profile expression patterns of BMP9- vs. GFP-stimulated MSCs.
Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells.
Specimen part, Cell line
View SamplesTGFbi (transforming growth factor-beta-induced) is a secreted protein and is capable of binding to both extracellular matrix (ECM) and cells. It thus acts as a bifunctional molecule enhancing ECM and cell interactions, a lack of which results in dysfunction of many cell types. In this study, we investigated the role of TGFbi in the function and survival of islets. Based on DNA microarray analysis followed by qPCR confirmation, the TGFbi gene showed drastic increases in expression in islets after culture. We demonstrated that recombinant TGFbi could preserve the integrity and enhance the function of cultured islets. Such a beneficial effect was mediated via signalling through FAK. Exogenous TGFbi was capable of sustaining high-level FAK phosphorylation in isolated islets, and FAK knockdown by siRNA in islets resulted in compromised islet function. TGFbi Tg islets showed better integrity and insulin release after in vitro culture. In vivo, b-cell proliferation was detectable in Tg but not wild type pancreata. At age above 12 months, Tg pancreata contained giant islets. Tg mice displayed better glucose tolerance than the controls. Tg islets were more potent in lowering blood glucose when transplanted into syngeneic mice with streptozotocin-induced diabetes, and these transplanted islets also underwent regeneration. Our results indicate that TGFbi is a vital trophic factor promoting islet survival, function and regeneration. At least some of its beneficial effect was mediated by signalling through FAK.
TGF-beta i promotes islet beta-cell function and regeneration.
Specimen part
View Samples