Malformations of the cardiovascular system are the most common type of birth defect in humans, affecting predominantly the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the role and downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of Twist1 we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 1246 genes, including 201 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings are consistent with a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 exerts its function by direct DNA binding to activate valve specific gene expression. Overall design: Profiled the AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq) (no replicates). We also produced a Tag-seq library from Twist1 null developing valves to reveal the gene expression changes associated with loss of this gene.
Twist1 transcriptional targets in the developing atrio-ventricular canal of the mouse.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.
Cell line, Treatment
View SamplesMyocyte enhancer factor 2B (MEF2B) is a transcription factor with somatic mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). The recurrence of these mutations indicates that they may drive lymphoma development. However, inferring the mechanisms by which they may drive lymphoma development was complicated by our limited understanding of MEF2Bs normal functions. To expand our understanding of the cellular activities of wildtype (WT) and mutant MEF2B, I developed and addressed two hypotheses: (1) identifying genes regulated by WT MEF2B will allow identification of cellular phenotypes affected by MEF2B activity and (2) contrasting the DNA binding sites, effects on gene expression and effects on cellular phenotypes of mutant and WT MEF2B will help refine hypotheses about how MEF2B mutations may contribute to lymphoma development. To address these hypotheses, I first identified genome-wide WT MEF2B binding sites and transcriptome-wide gene expression changes mediated by WT MEF2B. Using these data I identified and validated novel MEF2B target genes. I found that target genes of MEF2B included the cancer genes MYC, TGFB1, CARD11, NDRG1, RHOB, BCL2 and JUN. Identification of target genes led to findings that WT MEF2B promotes expression of mesenchymal markers, promotes HEK293A cell migration, and inhibits DLBCL cell chemotaxis. I then investigated how K4E, Y69H and D83V mutations change MEF2Bs activity. I found that K4E, Y69H and D83V mutations decreased MEF2B DNA binding and decreased MEF2Bs capacity to promote gene expression in both HEK293A and DLBCL cells. These mutations also reduced MEF2Bs capacity to alter HEK293A and DLBCL cell movement. From these data, I hypothesize that MEF2B mutations may promote DLBCL and FL development by reducing expression of MEF2B target genes that would otherwise function to help confine germinal centre B-cells to germinal centres. Overall, my research demonstrates how observations from genome-scale data can be used to identify cellular effects of candidate driver mutations. Moreover, my work provides a unique resource for exploring the role of MEF2B in cell biology: I map for the first time the MEF2B regulome, demonstrating connections between a relatively understudied transcription factor and genes significant to oncogenesis.
MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.
Cell line, Treatment
View SamplesApela (also referred to as Elabela, Ende and Toddler) is a small signaling peptide that activates the G protein-coupled receptor Aplnr. We used CRISPR/Cas9 to generate a null, reporter-expressing allele, in order to study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low penetrance cardiovascular defects that manifest after the onset of circulation. Targeted Apela null alleles exhibited different transcriptional activity depending on the presence or absence of a Neomycin selection cassette. These are referred to as Apela KO NEO-IN and Apela KO NEO-OUT strains, respectively. Despite subtle phenotypic characteristics that were unique to the NEO-OUT mutants, both Apela null strains shared the same variable expressivity of cardiovascular defects and the same penetrance of embryonic lethality. To investigate the earliest regulatory events leading to physical abnormalities in Apela mutants, we performed RNA-Seq on whole stage-matched and morphologically normal E7.5 embryos (3 wild-type, 6 Apela KO NEO-IN, and 6 Apela KO NEO-OUT individuals). We chose this stage because Apela is initially expressed in the embryo at late gastrulation, shortly after the emergence of extraembryonic mesoderm progenitors. Since modification of the Apela locus may influence the expression of neighboring genes, we examined the expression of upstream and downstream sequences and found no significant difference in their expression. Downregulated genes of interest included several mitochondrial genes, Ceacam2, Ulk4, and Mov10l1. Upregulated genes included the vascular endothelial growth factor Vegfc. Principal component analysis identified outliers (KO1 and KO9), both of which expressed lower levels of mesoderm markers. KO9 was further characterized by aberrant upregulation of erythroid and myeloid markers. This finding was confirmed in our study by qRT-PCR analysis of additional Apela null individuals. Overall design: 15 individual embryos were analyzed at E7.5. Embryos were stage-matched according to morphological landmarks. Control samples were wild-type (n=3), and Apela KO samples were null embryos from the NEO-IN (n=6, ‘KO1-6’) and NEO-OUT (n=6, ‘KO7-12) mutant strains. Whole embryos (including embryonic and extraembryonic tissues) were used for the analysis. Apela KO samples were isolated from homozygous KO intercrosses and therefore did not require genotyping.
Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives.
Specimen part, Cell line, Subject
View SamplesMyocyte enhancer factor 2B (MEF2B) is a transcription factor with somatic mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). The recurrence of these mutations indicates that they may drive lymphoma development. However, inferring the mechanisms by which they may drive lymphoma development was complicated by our limited understanding of MEF2B’s normal functions. To expand our understanding of the cellular activities of wildtype (WT) and mutant MEF2B, I developed and addressed two hypotheses: (1) identifying genes regulated by WT MEF2B will allow identification of cellular phenotypes affected by MEF2B activity and (2) contrasting the DNA binding sites, effects on gene expression and effects on cellular phenotypes of mutant and WT MEF2B will help refine hypotheses about how MEF2B mutations may contribute to lymphoma development. To address these hypotheses, I first identified genome-wide WT MEF2B binding sites and transcriptome-wide gene expression changes mediated by WT MEF2B. Using these data I identified and validated novel MEF2B target genes. I found that target genes of MEF2B included the cancer genes MYC, TGFB1, CARD11, NDRG1, RHOB, BCL2 and JUN. Identification of target genes led to findings that WT MEF2B promotes expression of mesenchymal markers, promotes HEK293A cell migration, and inhibits DLBCL cell chemotaxis. I then investigated how K4E, Y69H and D83V mutations change MEF2B’s activity. I found that K4E, Y69H and D83V mutations decreased MEF2B DNA binding and decreased MEF2B’s capacity to promote gene expression in both HEK293A and DLBCL cells. These mutations also reduced MEF2B’s capacity to alter HEK293A and DLBCL cell movement. From these data, I hypothesize that MEF2B mutations may promote DLBCL and FL development by reducing expression of MEF2B target genes that would otherwise function to help confine germinal centre B-cells to germinal centres. Overall, my research demonstrates how observations from genome-scale data can be used to identify cellular effects of candidate driver mutations. Moreover, my work provides a unique resource for exploring the role of MEF2B in cell biology: I map for the first time the MEF2B ‘regulome’, demonstrating connections between a relatively understudied transcription factor and genes significant to oncogenesis. Overall design: RNA-seq was performed on cells expressing V5 tagged WT or mutant MEF2B and on empty vector control cells. One biological replicates was performed on cell treated with either ionomycin or a solvent-only control.
MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.
No sample metadata fields
View SamplesHuman umbilical vein endothelial cells (HUVECs) were transduced with either MIY-N1IC (Notch1 intracellular domain) or MIY vector control. The cells were sorted for YFP, and RNA was extracted using Trizol (Invitrogen) and analyzed by the Affymetrix Human Genome U133 Plus 2.0 Array. Results were analyzed using the GCRMA algorithm to identify genes with a minimum of 2-fold induction or reduction. This global gene expression study was used to identify Notch targets in the endothelium.
Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase.
Specimen part
View SamplesTo comprehensively delineate the ontogeny of an organ system, we generated 112,217 single- cell transcriptomes representing all endoderm populations within the mouse embryo until midgestation. We employed graph-based approaches to model differentiating cells for spatio- temporal characterization of developmental trajectories. Our analysis reveals the detailed architecture of the emergence of the first (primitive or extra-embryonic) endodermal population and pluripotent epiblast. We uncover an unappreciated relationship between descendants of these lineages, before the onset of gastrulation, suggesting that mixing of extra-embryonic and embryonic endoderm cells occurs more than once during mammalian development. We map the trajectories of endoderm cells as they acquire embryonic versus extra-embryonic fates, and their spatial convergence within the gut endoderm; revealing them to be globally similar but retaining aspects of their lineage history. We observe the regionalized localization of cells along the forming gut tube, reflecting their extra-embryonic or embryonic origin, and their coordinate patterning into organ-specific territories along the anterior-posterior axis. Overall design: Total RNA was extracted from bulk tissue and dissociated cells of 13ss (~E8.75) gut tubes, from bulk tissue from anterior, anterior-midgut, midgut-posterior and posterior sections of 13ss gut tubes, as well as from extra-embryonic visceral endoderm and embryonic visceral endoderm of E7.5 embryos (see also table in section: Bulk RNA processing). The Trizol method (Invitrogen) was used for RNA extraction.
The emergent landscape of the mouse gut endoderm at single-cell resolution.
Specimen part, Subject
View SamplesWe identified that downregulation of RNF20/H2Bub1 is involved in HGSOC progression through altering key immune signaling pathways. The goal of this RNA-seq is to analyze gene expression profile in FTSEC cells (FT190 and FT194 cell lines) with RNF20 knockdown (shRNF20) or control shRNA. Integrating the data from ATAC-seq for same samples, we observed that expression of immune signaling pathways have significantly changed by RNF20/H2Bub1 downregulation. Overall design: mRNA profiles of FT190 and FT194 shRNF20 (RNF20 knockdown) or control shRNA cells were generated by deep sequencing using Illumina HiSeq 2500, in triplicate.
Early Loss of Histone H2B Monoubiquitylation Alters Chromatin Accessibility and Activates Key Immune Pathways That Facilitate Progression of Ovarian Cancer.
Subject
View SamplesArgonaute (Ago) proteins, which act in post-transcriptional gene regulation directed by small RNAs, are vital for normal stem cell biology. Here we report the genomic characterization of stable Ago-deficient mouse embryonic stem cells (mESC) and determine the direct, primary and system level response to loss of Ago-mediated regulation. We find mESCs lacking all four Ago proteins are viable, do not repress microRNA (miRNA)-targeted cellular RNAs, and show distinctive gene network signatures. Profiling of RNA expression and epigenetic activity in an Ago mutant genetic series indicates that early responses to Ago loss are driven by transcriptional regulatory networks, in particular the Tgf-ß/Smad transcriptional network. This finding is confirmed using a time course analysis of Ago depletion and Ago rescue experiments. Detailed analysis places Tgf-ß/Smad activation upstream of cell cycle regulator activation, such as Cdkn1a, and repression of the c-Myc transcriptional network. The Tgf-ß/Smad pathway is directly controlled by multiple low-affinity miRNA interactions with Tgf-ß/Activin receptor mRNAs and receptor-mediated activation is required for Tgf-ß/Smad target induction with Ago loss. Our characterization reveals the interplay of post-transcriptional regulatory pathways with transcriptional networks in maintaining cell state and likely coordinating cell state transitions. Overall design: mRNA seq from stable genetic Dicer and Dgcr8 mutant mouse embryonic stem cells.
Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities.
Specimen part, Cell line, Subject
View SamplesTo investigate differential gene expression, we analyzed the entire transcriptomes of tumor and matched normal brain tissues obtained from a patient who had glioblastoma multiforme. We extracted and sequenced the mRNA using Illumina GA2 platform. The raw data was analyzed using our recently developed program called RNASEQR, as well as ERANGE, MapSplice, SpliceMap, and TopHat. Overall design: Tumor and matched control brain tissues were obtained from a Han-Chinese patient.
RNASEQR--a streamlined and accurate RNA-seq sequence analysis program.
Specimen part, Subject
View Samples