MYC translocations are the biologic hallmark of Burkitt lymphomas but also occur in other mature B-cell lymphomas. If accompanied by chromosomal breaks targeting the BCL2 and/or BCL6 oncogenes, these MYC translocation-positive (MYC+) lymphomas are called double-hit lymphomas (DHLs); otherwise, the term single-hit lymphoma (SHL) is applied. In order to characterize the biologic features of these MYC+ lymphomas other than Burkitt lymphomas, we explored, after exclusion of molecular Burkitt lymphoma (mBL) as defined by gene expression profiling (GEP), the molecular, pathological and clinical aspects of 80 MYC translocation (MYC+) lymphomas (31 SHL, 26 BCL2+/MYC+, 14 BCL6+/MYC+, 6 BCL2+/BCL6+/MYC+ and 3 MYC+ lymphomas with unknown BCL6 status). Comparison of SHL and DHL revealed no difference in frequency of MYC partner (IG/non-IG), genomic complexity or MYC expression and no differences in GEP. DHL showed a more frequent GCB-like GEP and higher IGH and MYC mutation rates. GEP revealed 130 differentially expressed genes between BCL6+/MYC+ and BCL2+/MYC+ DHL. BCL2+/MYC+ DHL showed a more frequent GCB-like GEP. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In contrast to mBL and lymphomas without MYC break, SHL and DHL patients had similar poor outcome. Our data suggest that after excluding mBL, MYC+ lymphomas could be biologically widely lumped without further need for subclassification.
Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma.
Sex, Age, Specimen part
View SamplesThe distinction between the Burkitt lymphoma and diffuse large B-cell lymphoma is imprecise using current diagnostic criteria. We applied transcriptional and genomic profiling to molecularly define Burkitt lymphoma. Gene expression profiling employing Affymetrix GeneChips (U133A) was performed in 220 mature aggressive B-cell lymphomas, including a core group of eight Burkitt lymphomas, which fulfilled all diagnostic criteria of the WHO classification. A molecular signature of Burkitt lymphoma was generated. Chromosomal abnormalities were detected by interphase fluorescence in-situ hybridization and array comparative genomic hybridization. The molecular Burkitt lymphoma signature identified 44 cases. Fifteen of these cases lacked a morphology typical for Burkitt/Burkitt-like lymphoma. The vast majority (88%) of the 176 lymphomas without the molecular Burkitt lymphoma signature represented diffuse large B-cell lymphomas. In 20% of these cases a MYC break was detectable which was associated with complex chromosomal changes. Our molecular definition of Burkitt lymphoma sharpens and extends the spectrum of Burkitt lymphoma. In mature aggressive B-cell lymphomas without a Burkitt lymphoma signature, a chromosomal break in the MYC locus proved to be associated with adverse clinical outcome.
A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling.
Sex, Age
View SamplesBackground: Germinal center B-cell (GCB) lymphomas are common in children and adults. The prognosis strongly depends on age. Subgroups of GCB-lymphomas are characterized by chromosomal translocations affecting immunoglobulin (IG) loci leading to oncogene deregulation.
Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults.
Sex, Age
View SamplesActivation of the Ras/Erk pathway upregulates expression of the Kruppel-like Factor 5 (KLF5) transcription factor, and KLF5 is a downstream mediator of Ras oncogenic signaling. Specifically, in bladder and colon cancer cell lines KLF5 upregulates the Ras-pathway target gene cyclin D1, and facilitates entry into the S phase of the cell cycle. Ras mutations are common in lung cancer, but a role for KLF5 in lung tumorigenesis has not been defined. To this end, we manipulated KLF5 expression in four Ras-mutant human lung adenocarcinoma cell lines to find that KLF5 significantly modulates anchorage-independent growth, a mutant Ras phenotype. However, in a mouse model of human lung adenocarcinoma, K-RasG12D does not critically require Klf5 to mediate oncogenesis or induce cyclin D1 expression.
Kruppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival.
No sample metadata fields
View SamplesTranscript profiling and gene expression studies in NAE-treated seedlings: Seeds were germinated and seedlings maintained for 4 d in liquid MS media supplemented with 35 uM NAE(12:0)(N-lauroylethanolamine) prior to RNA isolation.
N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.
Age, Specimen part, Compound
View SamplesAnalysis of gene expression over serial 150um sections of a single gestational week 18 human neocortical specimen. The hypothesis tested with this dataset was that a transcriptional signature of GABAergic neurons could be isolated via unsupervised gene coexpression analysis due to variation in the abundance of this cell type from section to section. This dataset is the second of its kind generated using this method (Gene Coexpression Analysis of Serial Sections, or GCASS).
Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity.
No sample metadata fields
View Samplesc-Fos, a member of the stress-activated Activator Protein 1 (AP-1) transcription factor family, is expressed in human hepatocellular cancer (HCC). Using genetically engineered mouse models (GEMMs) we show that hepatocyte-specific expression of c-Fos leads to a proliferative, de-differentiated phenotype, whereas hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced liver cancer. Furthermore, c-Fos-expressing livers resemble human HCCs based on expression profiles. In the present RNA seq, we intend to analyze the transcriptomic profile of livers at 2 and 4 mo hepatocyte-specific c-Fos expression compared to the corresponding age-matched control mice. Moreover, we analyzed livers of mice with hepatocyte-specific deletion c-Fos at 48h after DEN treatment compared to identically treated control mice. Overall design: The general idea was to analyze the transcriptomic profile of hepatocyte-specific c-Fos over-expressing livers at 2 and 4 mo expression. Hereby, a hepatocyte-specific doxycycline (Dox)-switchable mouse model was (LAP-tTA; col1a1:Tet-O-fosFlag) was generated and c-Fos expression was induced at the age of 3 weeks by removal of doxycycline. Each sample LaptTA-fos-MUT represents an individual hepatocyte-specific c-fos expressing mouse at the indicated time-point and the corresponding identically treated control mouse LaptTA-fos-CO. Moreover, the transcriptomic profile of livers with hepatocyte-specific deletion of c-Fos at 48h after diethylnitrosamine (DEN)-induced liver cancer initiation was analyzed. For hepatocyte-specific knock-out of c-Fos, mice with conditional alleles of c-fos and the Alfp-Cre transgene were used. Control mice only carried the Alfp-Cre transgene. At the age of 8 weeks these mice were injected with 100mg/kg DEN. Each sample AlfpCre-fos-MUT_DEN represents an individual hepatocyte-specific c-fos knock-out mouse 48h after DEN and the identically treated control mouse AlfpCre-fos-CO-Cre+_DEN.
Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.
Specimen part, Treatment, Subject
View SamplesThis dataset consists of single-cell RNA-seq (Drop-seq) data from thymi of day 14.5 mouse embryos. The sample includes the whole thymus, including mesenchyme, endothelium, epithelium, thymocytes, and other lymphocytes. The mouse is a Rag2-/- knockout. Overall design: 1 sample
Inferring population dynamics from single-cell RNA-sequencing time series data.
Specimen part, Subject
View SamplesIn tumor tissues, hypoxia is a commonly observed feature resulting from rapidly proliferating cancer cells outgrowing the surrounding vasculature network. The four-step isogenic BJ cell model enables studies of defined steps of tumorigenesis: the normal, immortalized, transformed, and metastasizing stages. By transcriptome profiling under atmospheric and moderate hypoxic (3% O2) conditions, we observed that despite being highly similar, the four cell lines responded strikingly different to hypoxia. We demonstrate that the transcriptome adaptation to moderate hypoxia resembles the process of malignant transformation. The transformed cells displayed a distinct capability of metabolic switching, reflected in reversed gene expression patterns for several genes involved in oxidative phosphorylation and glycolytic pathways. By profiling the stage-specific responses to hypoxia, we identified ASS1 as a potential prognostic marker in hypoxic tumors. This study demonstrates the usefulness of the BJ cell model for highlighting the interconnection of pathways involved in malignant transformation and hypoxic response. Overall design: 16 paired-end samples in total: 4 different cell lines sequenced in duplicate across 2 conditions each.
Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia.
Specimen part, Treatment, Subject
View SamplesWe profiled RNA expression in human iPSC-derived ventricular and atrial cardiomyocytes Overall design: 4 biological replicates of human iPSC-derived ventricular cardiomyocytes and 4 biological replicates of iPSC-derived atrial cardiomyocytes (from 3 individual iPSC lines)
Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.
Specimen part, Cell line, Subject
View Samples