The circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. Extensive rhythmic transcription was observed in human skeletal muscle in comparison to in vitro cell culture. However, nearly half of the in vivo rhythmicity was lost at the mRNA accumulation level. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin stimulated glucose uptake were significantly reduced upon CLOCK depletion. Altogether, our findings suggest an essential role for cell-autonomous circadian clocks in coordinating muscle glucose homeostasis and lipid metabolism in humans. Overall design: 100 samples from 2 donors. Together with GSE108539, part of the same study described above.
Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.
Specimen part, Subject, Time
View SamplesRb null embryos exhibit defective fetal liver erythropoiesis. We used microarrays to compare Wt and Rb null fetal livers and to analyse gene expression differences which accompany and may underlie Rb null fetal liver degeneration, erythroid failure, and erythropoietic island dissolution.
Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse.
No sample metadata fields
View SamplesLesions of chronic idiopathic urticaria (CIU) showed significant up-regulation of 506 genes and reduced expression of 51 genes.
Gene expression profiles in chronic idiopathic (spontaneous) urticaria.
Specimen part, Subject
View SamplesObesity is a heterogeneous conditions comprising obese individuals with metabolic disorders (termed metabolically unhealthy obese; MUO) and obese individuals who are metabolically healthy (termed metabolically healthy obese; MHO).
Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese.
Specimen part, Disease, Disease stage
View SamplesLamins, the major components of the nuclear lamina, have diverse functions in many cellular processes. Despite broad expression, lamins have been implicated in cell type-specific roles in development, aging and disease by regulating gene expression. Yet, due to the lack of in depth lineage-specific functional studies, it remains unclear whether or how lamins regulate cell type-specific functions. Using targeted knockout of lamin B1 in the olfactory sensory neuron lineage, we show that lamin B1 is not required for early stages of olfactory sensory neuron differentiation but is needed for formation of mature neurons that properly respond to odor stimulation. Lamin B1 mutant cells exhibited decreased expression of genes involved in mature neuron function, increased expression of genes atypical of the olfactory lineage and clustered nuclear pore distribution. These results demonstrate that the universally expressed lamin B1 regulates cell type-specific gene expression and terminal differentiation. Overall design: Transcriptome profiles were generated from sorted regenerated olfactory epithelium cells lacking Lamin B1 (Lmnb1) and control (heterozygous cells). Each sample is collected from one mouse. Data are from two experimental groups (G1,G2), each containing a control and a mutant sample. Different groups differ in treatment, parents, age and sex. Within a group, treatment, sample preparation, sequencing, animal sex, age, and parents are the same.
Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.
Sex, Age, Specimen part, Subject
View SamplesWe used expression quantitative trait locus mapping in the laboratory rat (Rattus norvegicus) to gain a broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant to human eye disease. Of >31,000 gene probes represented on an Affymetrix expression microarray, 18,976 exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression among 120 F2 rats generated from an SR/JrHsd x SHRSP intercross. Genome-wide linkage analysis with 399 genetic markers revealed significant linkage with at least one marker for 1,300 probes (alpha = 0.001; estimated empirical false discovery rate = 2%). Both contiguous and noncontiguous loci were found to be important in regulating mammalian eye gene expression. We investigated one locus of each type in greater detail and identified putative transcription-altering variations in both cases. We found an inserted cREL binding sequence in the 5' flanking sequence of the Abca4 gene associated with an increased expression level of that gene, and we found a mutation of the gene encoding thyroid hormone receptor beta 2 associated with a decreased expression level of the gene encoding short-wave sensitive opsin (Opn1sw). In addition to these positional studies, we performed a pairwise analysis of gene expression to identify genes that are regulated in a coordinated manner and used this approach to validate two previously undescribed genes involved in the human disease Bardet-Biedl syndrome. These data and analytic approaches can be used to facilitate the discovery of additional genes and regulatory elements involved in human eye disease.
Regulation of gene expression in the mammalian eye and its relevance to eye disease.
No sample metadata fields
View SamplesWith a focus on rheumatoid arthritis (RA), we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritise molecular pathways for targeting in this and related immune pathologies. Whole genome methylation and transcriptional data from isolated CD4+ T cells and B cells of >100 genotyped and phenotyped inflammatory arthritis patients, all of whom were naïve to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with GWAS findings across IMDs and other publically available resources.
Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.
Sex, Age, Specimen part, Subject
View SamplesWith a focus on rheumatoid arthritis (RA), we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritise molecular pathways for targeting in this and related immune pathologies. Whole genome methylation and transcriptional data from isolated CD4+ T cells and B cells of >100 genotyped and phenotyped inflammatory arthritis patients, all of whom were naïve to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with GWAS findings across IMDs and other publically available resources.
Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.
Sex, Age, Specimen part, Subject
View SamplesObjective:
Gene expression analysis in absence epilepsy using a monozygotic twin design.
Sex
View Samples