refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 225 results
Sort by

Filters

Technology

Platform

accession-icon GSE19397
Expression data identifying hypermethylated genes associated with acquired cisplatin resistance
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Treatment-related DNA hypermethylation may play a role in creating drug resistant phenotypes by inactivating genes that are required for cytotoxicity, but there have been no genome-wide studies to systematically investigate methylation of individual genes following exposure to chemotherapy.

Publication Title

Identification of hypermethylated genes associated with cisplatin resistance in human cancers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE29330
Identification of GNG7 as An Epigenetically Silenced Gene in Head and Neck Cancer by Gene Expression Profiling
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Silencing of tumor suppressor genes plays a vital role in head and neck carcinogenesis. Aberrant hypermethylation in the promoter region of some known or putative tumor suppressor genes (TSGs) occurs frequently during the development of various cancers including head and neck squamous cell carcinoma (HNSCC). In this study we used an expanded mRNA expression profiling approach followed by microarray expression analysis to identify epigenetically inactivated genes in HNSCC. Two HNSCC cell lines were treated with 5-aza-2-deoxycytidine followed by microarray analysis to identify epigenetically silenced genes in HNSCC. 1960, 614, and 427 genes were upregulated in HNSCC cell lines JHU-012, JHU-011 and the combination of both cell lines, respectively. HNSCC tumor and normal mucosal samples were used for gene profiling by a 47K mRNA gene expression array and we found, 7140 genes were downregulated in HNSCC tumors compared to normal mucosa as determined by microarray analysis and were integrated with cell line data. Integrative analysis defined 126 candidate genes, of which only seven genes showed differentially methylation in tumors and no methylation in normal mucosa after bisulfite sequencing. After validation by QMSP, one gene, GNG7, was confirmed as being highly methylated in tumors and unmethylated in normal mucosal and salivary rinse samples demonstrating cancer-specific methylation in HNSCC tissues. TXNIP and TUSC2 were partially methylated in tumors and normal salivary rinses but unmethylated in normal mucosa. We concluded GNG7 as a highly specific promoter methylated gene associated with HNSCC. In addition, TXNIP and TUSC2 are also potential biomarkers for HNSCC.

Publication Title

Identification of guanine nucleotide-binding protein γ-7 as an epigenetically silenced gene in head and neck cancer by gene expression profiling.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP083765
Gene expression changes in yeast cells deleted for Nat4 and cells grown in calorie-restriction
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report here mRNA-seq data of wild-type and Nat4-deletion mutant yeast cells. We also report mRNA-seq data of wild-type yeast cells grown under non-calorie restriction (NCR) and calorie restriction (CR) conditions. Overall design: Comparison of differential gene-expression changes detected in Nat4-deletion mutant and cells grown in calorie restriction

Publication Title

Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE14009
Nutritional control of gene expression during C. elegans L1 arrest and recovery
  • organism-icon Caenorhabditis elegans
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RNA Pol II accumulates at promoters of growth genes during developmental arrest.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11055
Temporal expression analysis of C. elegans larvae hatching in the presence and absence of food.
  • organism-icon Caenorhabditis elegans
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

When C. elegans larvae hatch in the absence of food they persist in a stress resistant, developmentally arrested state (L1 arrest). We characterized mRNA expression genome-wide in a pair of bifurcating time series starting in the late embryo and proceeding through the hatch in the presence and absence of food (E. coli).

Publication Title

RNA Pol II accumulates at promoters of growth genes during developmental arrest.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25518
Testis developmental gene expression in cryptorchid boys at risk of azoospermia
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Despite timely and successful surgery, 32% of patients with bilateral and 10% with unilateral cryptorchidism will develop azoospermia. Cryptorchid boys at risk of azoospermia display a typical testicular histology of impaired mini-puberty at the time of the orchidopexy.

Publication Title

Testicular gene expression in cryptorchid boys at risk of azoospermia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39877
Expression data from skeletal muscles of flies with muscle-specific overexpression of Foxo or Mnt
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Skeletal muscle senescence influences whole organism aging, yet little is known on the relay of pro-longevity signals from muscles to other tissues. We performed an RNAi screen in Drosophila for muscle-released cytokines (?myokines?) regulating lifespan and identified Myoglianin, the homolog of human Myostatin. Myoglianin is induced in skeletal muscles by the transcription factor Mnt and together they constitute an inter-organ signaling module that regulates lifespan, age-related muscle dysfunction, and protein synthesis across aging tissues. Both Mnt and Myoglianin activate already in young age the protective decline in protein synthesis that is typical of old age, while knock-down of Myoglianin impairs this process. Mechanistically, Mnt decreases the expression of nucleolar components in muscles while also decreasing nucleolar size in distant tissues via Myostatin/p38 MAPK signaling. Our results highlight a myokine-dependent inter-organ longevity pathway that coordinates nucleolar function and protein synthesis across aging tissues.

Publication Title

Intertissue control of the nucleolus via a myokine-dependent longevity pathway.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE14256
Human fibroblast stimulation with PDGF-BB or b-FGF
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We analyzed gene expression in human fibroblasts stimulated by platelet-derived growth factor-BB (PDGF-BB) or basic fibroblast growth factor (bFGF) for 1h and 24h. The results of two independent experiments were merged. SAM analysis identified 116 relevant probe sets. Hierarchical clustering of these probe sets showed divergent early gene regulation by PDGF and FGF but overlapping late response. We first analyzed genes commonly regulated by PDGF-BB and b-FGF more than 2 fold after 24h of stimulation and we found that these two growth factors repressed FOXO.

Publication Title

The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5301
Expression data from yeast treated with enediynes compared to gamma radiation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

We are investigating the transcriptional response of yeast to treatment with enediynes or gamma radiation, which generate different extents of double or single strand breaks in DNA.

Publication Title

The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059674
MLX transcriptional regulation in muscle cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

This study set out to identify MLX transcriptional targets in muscle cells. C2C12 Myoblasts were virally transduced to increase MLX activity, by overexpression of the wild-type protein; and to decrease MLX activity by overexpression of a dominant negative MLX protein and by shRNA induced knockdown of MLX. Transcripts that were significantly and consistently regulated by the different modes of MLX modulation were identified. The largest proportion of these were genes encoding secreted proteins including growth factors, cytokines and extracellular proteins. We therefore conclude that MLX can regulate myokine transcripts. Overall design: mRNA profiles from C2C12 muscle cells with increased and decreased MLX activity were examined.

Publication Title

The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact