The etiology of autoimmune hepatitis is poorly understood but likely involves Th1 cells producing IFN-. BALB/c background TGF-1-/- mice rapidly develop fulminant Th1-mediated autoimmune hepatitis. Our aims are to profile liver gene expression in TGF-1-/- mice, to identify gene expression pathways dependent on IFN- as possible targets for rational therapy, and to test potential targets directly in vivo in mice.
The role of Ifng in alterations in liver gene expression in a mouse model of fulminant autoimmune hepatitis.
No sample metadata fields
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female C57BL/6 mice using genome-wide expression profiling and temporal analysis to map early host response pathways stemming from UPEC colonization
Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection.
Sex, Age, Specimen part
View SamplesThough obesity is a global epidemic, the physiological mechanisms involved are little understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesized that maternal diet influences fetal 5-HT exposure, which then influences central appetite network development and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant low protein fed rat mothers exhibited elevated serum 5-HT, which was also evident in the placenta and fetal brains at E16.5. This increase was associated with reduced hypothalamic expression of 5-HT2CR - the primary 5-HT receptor influencing appetite. As expected, reduced 5-HT2CR expression was associated with impaired sensitivity to 5-HT-mediated appetite suppression. 5-HT primarily achieves effects on appetite via 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We reveal that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC and that 5-HT2AR mRNA is increased in the hypothalamus of in utero growth restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals are more sensitive to 5-HT2AR agonist-induced appetite suppression. These findings may not only reveal a 5-HT-mediated mechanism underlying programming of obesity susceptibility but also provide a promising means to correct it, via a 5-HT2AR agonist treatment.
5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female C57BL/6 mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization
Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.
Sex, Age, Specimen part
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female CBA mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization
Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.
Sex, Age
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 4 biological replicates per condition
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
No sample metadata fields
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 3 biological replicates per condition
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part, Cell line, Subject
View Samples