Rod and cone photoreceptors in mammalian retina are generated from common pool(s) of neuroepithelial progenitors. NRL, CRX and NR2E3 are key transcriptional regulators that control photoreceptor differentiation. Mutations in NR2E3, a rod-specific orphan nuclear receptor, lead to loss of rods, increased density of S-cones, and supernormal S-cone-mediated vision in humans. To better understand its in vivo function, NR2E3 was expressed ectopically in the Nrl-/- retina, where post-mitotic precursors fated to be rods develop into functional S-cones similar to the human NR2E3 disease. Expression of NR2E3 in the Nrl-/- retina completely suppressed cone differentiation and resulted in morphologically rod-like photoreceptors, which were not functional. Gene profiling of FACS-purified photoreceptors confirmed the role of NR2E3 as a strong suppressor of cone genes and an activator of a subset of rod genes (including rhodopsin) in vivo. Ectopic expression of NR2E3 in cone precursors and differentiating S-cones of wild type retina also generates rod-like cells. The dual regulatory function of NR2E3 is not dependent upon the presence of NRL and/or CRX, but on the timing and level of its expression. Our studies reveal a critical role of NR2E3 in establishing functional specificity of post-mitotic photoreceptor precursors during retinal neurogenesis.
In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development.
Sex, Specimen part
View SamplesWe report RNA-Seq analysis of the transcriptome of retinas and RPE/choroids from Abca4 knockout, Abca4 L541P;A1038V knockin and control wild type mice in order to better understand changes in gene regulation that could lead to retinal pathology in mice with ABCA4 deficiency/defect. Overall design: Retinal and RPE/choroidal mRNA profiles of 30-day-old wild type (WT), Abca4-/- and Abca4L541P;A1038V/L541P;A1038V mice were generated by RNA-Seq, using Illumina Hiseq 2500
Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations.
No sample metadata fields
View SamplesWe studied the transcriptional profile in yeast cells in response to heterologous expression of mammalian activated AKT1
Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesWe studied the transcriptional profile in response to acute PtdIns-4,5P2 depletion induced by heterologous expression of a plasma membrane-directed version of mammalian PI3K catalytic subunit (p110-CAAX).
The yeast cell wall integrity pathway signals from recycling endosomes upon elimination of phosphatidylinositol (4,5)-bisphosphate by mammalian phosphatidylinositol 3-kinase.
No sample metadata fields
View SamplesThe neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL). We have recently demonstrated SOX11 tumorigenic potential in vivo by showing a significant reduction on tumor growth of SOX11-knockdown MCL cells in xenograft experiments, confirming the clinical observations that SOX11 may play an important role in the aggressive behavior of MCL (Vegliante et al., 2013). However, the specific mechanisms regulated by SOX11 that promote the oncogenic and rapid tumor growth of aggressive MCL still remain to be elucidated. To further characterize the potential oncogenic mechanisms regulated by SOX11 in MCL, we have analyzed the GEP derived from the xenograft SOX11-positive and knockdown xenograft derived tumors.
SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma.
Specimen part
View SamplesTo get insight in the functional role of EGR2 for Ewing sarcoma, we performed a transcriptional profiling of Ewing sarcoma cells after knockdown of EGR2 and compared the resulting transcriptional signature with that of EWSR1-FLI1-silenced Ewing sarcoma cells. In accordance with the strong EGR2-induction by EWSR1-FLI1, both genes highly significantly overlap in their transcriptional signatures. Gene-set enrichment analyses (GSEA) and DAVID (Database for Annotation, Visualisation and Integrated Discovery) gene ontology analyses indicated a strong impact of EGR2 on cholesterol and lipid biosynthesis resembling its function in orchestrating lipid metabolism of myelinating Schwann cells.
Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite.
Cell line, Treatment
View Samples