refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1223 results
Sort by

Filters

Technology

Platform

accession-icon SRP069976
Human-Leishmania skin lesion transcriptome
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The goal of this study is to simultaneously examine host and parasite gene expression programs in skin lesions of human patients infected with the intracellular parasite Leishmania. We conducted high-resolution sequencing of the transcriptomes from early and late stage cutaneous leishmaniasis biopsies using an RNA-seq approach. An array of computational tools was applied to map reads to the Leishmania and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for Leishmania and human genes, helping to explain tuning of the immune response to parasite transcriptomic profiles present in the lesion microenvironment. This data provided a deeper look at the transcriptomic profile of the host response in conjunction with a novel look at the parasite transcriptome in human cutaneous lesions. These data also offer the first glimpse of Leishmania gene expression profiles specific to the cutaneous manifestation of disease in human patients. This metatranscriptomic study provides a solid framework for future functional, genomic, and clinical studies of leishmaniasis as well as intracellular pathogenesis in general.

Publication Title

Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14595
Comparing ERG expression and vector control in 293HEK cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The goal of this study was to identify potential genes regulated by ERG

Publication Title

Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16363
Microarray Analysis of Lymphatic Tissue Reveals Stage-Specific, Gene-Expression Signatures in HIV-1 Infection
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Untreated HIV-1 infection progresses through acute and asymptomatic stages to AIDS. While each of the three stages has well-known clinical, virologic and immunological characteristics, much less is known of the molecular mechanisms underlying each stage. Here we report lymphatic tissue microarray analyses revealing for the first time stage-specific patterns of gene expression during HIV-1 infection. We show that while there is a common set of key genes with altered expression throughout all stages, each stage has a unique gene-expression signature. The acute stage is most notably characterized by increased expression of hundreds of genes involved in immune activation, innate immune defenses (e.g.MDA-5, TLR-7 and -8, PKR, APOBEC3B, 3F, 3G), adaptive immunity, and in the pro-apoptotic Fas-Fas-L pathway. Yet, quite strikingly, the expression of nearly all acute-stage genes return to baseline levels in the asymptomatic stage, accompanying partial control of infection. In the AIDS stage, decreased expression of numerous genes involved in T cell signaling identifies genes contributing to T cell dysfunction. These common and stage-specific, gene-expression signatures provide new insights into the molecular mechanisms underlying the host response and the slow, natural course of HIV-1 infection.

Publication Title

Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Race, Subject

View Samples
accession-icon GSE469
Temporal profiling in muscle regeneration.
  • organism-icon Mus musculus
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Array (mgu74a)

Description

Temporal expression profiling was utilized to define transcriptional regulatory pathways in vivo in a mouse muscle regeneration model. Potential downstream targets of MyoD were identified by temporal expression, promoter data base mining, and gel shift assays; Slug and calpain 6 were identified as novel MyoD targets. Slug, a member of the snail/slug family of zinc finger transcriptional repressors critical for mesoderm/ectoderm development, was further shown to be a downstream target by using promoter/reporter constructs and demonstration of defective muscle regeneration in Slug null mice.

Publication Title

Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51394
Wildtype, miR-1-1 KO, miR-1 Double het P2 mixed strain heart analysis (MoGene 2.0 ST Arrays).
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Neonatal hearts (P2) from wildtype, miR-1-1 null and miR-1-2 +/-: miR-1-1 +/- double heterozygote animals were isolated and total RNA was extracted with TRIzol (Invitrogen), following the manufacturers suggested protocol.

Publication Title

microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94867
Impact of short-term high fat diet regimen on hepatic transcriptome
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to unveil the gene expression alterations upon short-term HFD administration

Publication Title

Dietary alterations modulate susceptibility to Plasmodium infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP051485
Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. Overall design: RNA-seq of SETD2 mutant and wild-type ccRCC cell lines.

Publication Title

Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38467
Transcriptional perturbations caused by tumor virus proteins
  • organism-icon Homo sapiens
  • sample-icon 448 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations associated with cancer predisposition and large numbers of somatic genomic alterations. However, it remains challenging to distinguish between background, or passenger and causal, or driver cancer mutations in these datasets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. To test the hypothesis that genomic variations and tumour viruses may cause cancer via related mechanisms, we systematically examined host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways that go awry in cancer, such as Notch signalling and apoptosis. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on par with their identification through functional genomics and large-scale cataloguing of tumour mutations. These complementary approaches together result in increased specificity for cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate prioritization of cancer-causing driver genes so as to advance understanding of the genetic basis of human cancer.

Publication Title

Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins.

Sample Metadata Fields

Cell line

View Samples
accession-icon E-MEXP-749
Transcription profiling by array of Arabidopsis after treatment with benzyladenine
  • organism-icon Arabidopsis thaliana
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

10 day old seedlings were treated with 5uM of the cytokinin Benzyladenine(BA)or DMSO at 15min, 45min, 120min, 480min and 1440min

Publication Title

Expression profiling of cytokinin action in Arabidopsis.

Sample Metadata Fields

Age, Compound, Time

View Samples
accession-icon GSE47220
ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip, Illumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact