This SuperSeries is composed of the SubSeries listed below.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesThis array analysis is to study developmental time course of the regulation of target messages expression during culture of murine neutrophils versus miR-223 null neutrophils. Culture media was SILAC-IMDM for MS analysis.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesThis array analysis is to study the regulation of target messages expression in murine neutrophils versus miR-223 null neutrophils.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesThis array analysis is to study the regulation of target messages expression in in vitro cultured murine neutrophils versus miR-223 null neutrophils. Culture media was SILAC-IMDM for MS analysis.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesRNAseq analysis of CD8 T cells becoming dysfunctional in progressing tumors. The overall goal of this study was to elucidate the molecular program that mediates functional unresponsiveness in tumor-specific CD8 T cells. In comparison, we also investigated CD8 T cells differentiating to functional effector and memory T cells during an acute listeria infection. Overall design: T cells were sorted by flow cytometry and RNA-seq was performed.
Chromatin states define tumour-specific T cell dysfunction and reprogramming.
Disease, Disease stage, Cell line, Subject
View SamplesThe Hippo pathway is an emerging signaling cascade involved in the regulation of organ size control. It consists of evolutionally conserved protein kinases that are sequentially phosphorylated and activated. The active Hippo pathway subsequently phosphorylates a transcription coactivator, YAP, which precludes its nuclear localization and transcriptional activation. Identification of transcriptional targets of YAP in diverse cellular contexts is therefore critical to the understanding of the molecular mechanisms in which the Hippo pathway restricts tissue growth.
Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer.
Specimen part
View SamplesBoth diploid RPE-1 and BJ-1 cells were made tetraploid by transient treatment with the cytokinesis inhibitor DCD. Proliferating tetraploids from both BJ-1 and RPE-1 were selected and isolated. The gene expression profiles of the proliferating tetraploid cells were then compared to the diploids from which they originated.
Cytokinesis failure triggers hippo tumor suppressor pathway activation.
Specimen part
View SamplesGenetically unstable tetraploid cells can promote tumorigenesis. Recent estimates suggest that ~37% of human tumors have undergone a genome-doubling event during their development. This potentially oncogenic effect of tetraploidy is countered by a p53-dependent barrier to proliferation. However, the cellular defects and corresponding signaling pathways that trigger growth suppression in tetraploid cells are not known. Here we combine genome-scale RNAi screening and in vitro evolution approaches to demonstrate that cytokinesis failure activates the Hippo tumor suppressor pathway in cultured cells as well as in naturally occurring tetraploid cells in vivo. Induction of the Hippo pathway is triggered in part by extra centrosomes, which alter small G-protein signaling and activate LATS2 kinase; LATS2 in turn stabilizes p53 and inhibits the transcriptional regulators YAP and TAZ. These findings define an important tumor suppression mechanism. Furthermore, our experiments uncover adaptations that allow nascent tumor cells to bypass this inhibitory regulation.
Cytokinesis failure triggers hippo tumor suppressor pathway activation.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hippo pathway activity influences liver cell fate.
Specimen part, Time
View SamplesHippo signaling is highly associated with activity in the stem cell compartment of many epithelial tissues. In this study, we examined if Hippo signaling inhibition (by inducing Yap expression) could convert differentiated cells into a progenitor like phenotype. Organoid cells derived from mouse livers under various conditions, wild-type, Yap ON (Plus Dox), and Yap ON then OFF (Minus Dox) was examined.
Hippo pathway activity influences liver cell fate.
Specimen part
View Samples