Lateral root initiation was used as a model system to study the mechanisms behind auxin-induced cell division. Genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the AUX/IAA signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.
Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana.
No sample metadata fields
View SamplesThe root cap-specific conversion of the auxin precursor indole-3-butyric acid (IBA) into the main auxin indole-3-acetic acid (IAA) generates a local auxin source which subsequently modulates both the periodicity and intensity of auxin response oscillations in the root tip of Arabidopsis, and consequently fine-tunes the spatiotemporal patterning of lateral roots. To explore downstream components of this signaling process, we investigated the early transcriptional regulations happening in the root tip during IBA-to-IAA conversion in Col-0 and ibr1 ibr3 ibr10 triple mutant after 6 hours of IBA treatment.
Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root.
Age, Specimen part, Treatment
View SamplesFunctional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g; flowering and floral organ identity), in stress-related developmental processes such as abscission, fruit ripening and senescence and the role of some of them in stress response regulation was reported. The aim of this study was to decipher the genes that are under the control of the OsMADS26 transcription factor in rice in standard or osmotic stress condition.
OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice.
Age, Specimen part
View SamplesCoordination of cell division and pattern formation is central to tissue and organ development, and is particularly important in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge to control tissue development. Here, we identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, non-responding cytokinin source within the root vascular tissue. We provide experimental and theoretical evidence that these cells act as a local tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.
Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.
Specimen part, Treatment
View SamplesThe acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. To further explore the specificity of naxillin for lateral root development, we compared the early effects of naxillin at the transcriptome level with NAA (1-Naphthaleneacetic acid) in roots of 3-day-old seedlings after 2-h and 6-h treatment.
A role for the root cap in root branching revealed by the non-auxin probe naxillin.
Age, Specimen part, Treatment
View SamplesEndocycle is an alternative cell cycle during which the DNA is replicated in the absence of cytokinesis, resulting in cellular endopolyploidy. The endocycle is frequenctly observed in plant species that grow under extreme conditions. Thus, endopolyploidy has been postulated to be a mechanism facilitating adaptive growth.
A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation.
Specimen part
View SamplesWe profiled transcripts from sorted phloem cells of wild-type and apl mutants to identify the genes regulated by APL in phloem.
Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.
Specimen part
View SamplesSomatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates, but is especially prominent in higher plants where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues and a strong dependence on stress signals. Cellular and transcriptomic analysis revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and change in expression of cell wall modifying genes, correlated with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability, and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments. Overall design: Two biological replicates of Col-0 were compared with three biological replicates of smr1
A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation.
Specimen part, Subject
View SamplesArabidopsis seedlings, of both wild-type and an ARF7/ARF19 double knockout mutant, were grown to 7 days post-germination. The roots were then dissected into 5 developmental zones, the meristem, early elongation zone, late elongation zone, mature root and lateral root zone. The sections then underwent transcriptional profiling to identify processes and regulatory events specific and in common to the zones.
A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity.
Age, Specimen part
View SamplesIn order to address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC), transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern ("metastatic signature") derived from primary tumors was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described "global" metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC.
Gene signatures of progression and metastasis in renal cell cancer.
Specimen part
View Samples