This SuperSeries is composed of the SubSeries listed below.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesThe different phases of tumor immunoediting in vivo were dissected thanks to a murine model of glioma induced by PDGF-B overexpression. We show that low-grade gliomas are highly immunostimulatory and that the adaptive immune system prevents the development of secondary tumor in syngeneic mice. During tumor progression, glioma cells downregulate immunostimulatory genes and the immune infiltrate becomes pro-tumorigenic. We showed that glioma cells are able to progress towards a high-grade phenotype even in immunodeficient mice, albeit more slowly and this progression invariably requires a downregulation of immunostimulatory genes.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesThe different phases of tumor immunoediting in vivo were dissected thanks to a murine model of glioma induced by PDGF-B overexpression. We show that low-grade gliomas are highly immunostimulatory and that the adaptive immune system prevents the development of secondary tumor in syngeneic mice. During tumor progression, glioma cells downregulate immunostimulatory genes and the immune infiltrate becomes pro-tumorigenic.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FUS Regulates Activity of MicroRNA-Mediated Gene Silencing.
Cell line
View SamplesIndividuals with the ALS-linked (amyotrophic lateral sclerosis) truncation mutation (R495X) in FUS (fused in sarcoma) are known to have a more aggressive form of the disease than those with point mutations. The underlying cause for this difference is unclear. We report that FUS is a component of miRISC (miRNA-induced silencing complex) and that overexpression of its truncation mutant R495X negatively impacts miRNA mediated RNA silencing.
FUS Regulates Activity of MicroRNA-Mediated Gene Silencing.
Cell line
View SamplesIn zebrafish, parental exposure to ionizing radiation has been associated with effects in offspring, such as increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 hours post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy). One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. One year after exposure, embryos from the 8.7 mGy/h group exhibited 2455(61.8% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, which could be linked to effects in adults and offspring, such as DNA damage and lipid peroxidation. Interestingly, pathways between the two groups were oppositely regulated. Our results indicate latent effects following ionizing radiation exposure in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations. Overall design: One month after exposure, mRNA from F1 5.5 hpf embryos from parents exposed to 8.7 and 53 mGy/h gamma radiation during gametogenesis was sequenced on the Illumina 4000 platform with three replicas per treatment. One year after exposure, mRNA from F1 embryos from the same parents exposed to 8.7 mGy/h was sequenced with three biological replicates. In both cases, F1 embryos from non-exposed parents were used as control and mRNA sequenced in triplicates, taken at the same time points as the exposed samples.
Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View Samples